Homogeneous aggregation operators
Kybernetika, Tome 42 (2006) no. 3, pp. 279-286 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Recently, the utilization of invariant aggregation operators, i.e., aggregation operators not depending on a given scale of measurement was found as a very current theme. One type of invariantness of aggregation operators is the homogeneity what means that an aggregation operator is invariant with respect to multiplication by a constant. We present here a complete characterization of homogeneous aggregation operators. We discuss a relationship between homogeneity, kernel property and shift-invariance of aggregation operators. Several examples are included.
Recently, the utilization of invariant aggregation operators, i.e., aggregation operators not depending on a given scale of measurement was found as a very current theme. One type of invariantness of aggregation operators is the homogeneity what means that an aggregation operator is invariant with respect to multiplication by a constant. We present here a complete characterization of homogeneous aggregation operators. We discuss a relationship between homogeneity, kernel property and shift-invariance of aggregation operators. Several examples are included.
Classification : 03E72, 26B99, 68T37
Keywords: aggregation operator; homogeneity; kernel property
@article{KYB_2006_42_3_a2,
     author = {R\"uckschlossov\'a, Tatiana and R\"uckschloss, Roman},
     title = {Homogeneous aggregation operators},
     journal = {Kybernetika},
     pages = {279--286},
     year = {2006},
     volume = {42},
     number = {3},
     mrnumber = {2253389},
     zbl = {1249.26024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a2/}
}
TY  - JOUR
AU  - Rückschlossová, Tatiana
AU  - Rückschloss, Roman
TI  - Homogeneous aggregation operators
JO  - Kybernetika
PY  - 2006
SP  - 279
EP  - 286
VL  - 42
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a2/
LA  - en
ID  - KYB_2006_42_3_a2
ER  - 
%0 Journal Article
%A Rückschlossová, Tatiana
%A Rückschloss, Roman
%T Homogeneous aggregation operators
%J Kybernetika
%D 2006
%P 279-286
%V 42
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a2/
%G en
%F KYB_2006_42_3_a2
Rückschlossová, Tatiana; Rückschloss, Roman. Homogeneous aggregation operators. Kybernetika, Tome 42 (2006) no. 3, pp. 279-286. http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a2/

[1] Aczél J., Gronau, D., Schwaiger J.: Increasing solutions of the homogeneity equation and similar equations. J. Math. Anal. Appl. 182 (1994), 436–464 | DOI | MR

[2] Calvo T., Mesiar R.: Stability of aggregation operators. In: Proc. EUSFLAT’2001, Leicester 2001, pp. 475–478 | MR

[3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: Basic concepts, issues and properties. In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–105 | MR

[4] Calvo T., Mesiar, R., Yager R. R.: Quantitative weights and aggregation. IEEE Trans. Fuzzy Systems 12 (2004), 1, 62–69 | DOI | MR

[5] Dujmovic J. J.: Weighted conjuctive and disjunctive means and their application in system evaluation. Univ. Beograd Publ. Elektrotehn. Fak. 483 (1974), 147–158 | MR

[6] Grabisch M.: Symmetric and asymmetric integrals: the ordinal case. In: Proc. IIZUKA’2000, Iizuka 2000, CD-rom

[7] Grabisch M., Murofushi, T., Sugeno M., (eds.) M.: Fuzzy Measures and Integrals. Theory and Applications. Physica–Verlag, Heidelberg 2000 | MR | Zbl

[8] Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty, and Information. Prentice Hall, Englewood Cliffs, New Jersey 1988 | MR | Zbl

[9] Kolesárová A., Mordelová J.: 1-Lipschitz and kernel aggregation operators. In: Proc. AGOP’2001, Oviedo 2001, pp. 71–75

[10] Lázaro J., Rückschlossová, T., Calvo T.: Shift invariant binary aggregation operators. Fuzzy Sets and Systems 142 (2004), 51–62 | DOI | MR | Zbl

[11] Mesiar R., Rückschlossová T.: Characterization of invariant aggregation operators. Fuzzy Sets and Systems 142 (2004), 63–73 | DOI | MR | Zbl

[12] Nagumo M.: Über eine Klasse der Mittelwerte. Japan. J. Math. 7 (1930), 71–79

[13] Rückschlossová T.: Aggregation Operators and Invariantness. Ph.D. Thesis, Slovak University of Technology, Bratislava 2004

[14] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338–353 | DOI | MR | Zbl