Keywords: category theory; aggregation operator; associative aggregation operator; partially ordered groupoid; partially ordered semigroup; partially ordered monoid
@article{KYB_2006_42_3_a1,
author = {Demirci, Mustafa},
title = {Aggregation operators on partially ordered sets and their categorical foundations},
journal = {Kybernetika},
pages = {261--277},
year = {2006},
volume = {42},
number = {3},
mrnumber = {2253388},
zbl = {1249.03091},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a1/}
}
Demirci, Mustafa. Aggregation operators on partially ordered sets and their categorical foundations. Kybernetika, Tome 42 (2006) no. 3, pp. 261-277. http://geodesic.mathdoc.fr/item/KYB_2006_42_3_a1/
[1] Adámek J., Herrlich, H., Strecker G. E.: Abstract and Concrete Categories. Wiley, New York 1990 | MR | Zbl
[2] Atanassov K. T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20 (1986), 87–96 | DOI | MR | Zbl
[3] Birkhoff G.: Lattice Theory. Third edition. Amer. Math. Soc. Colloquium Publications, Amer. Math. Soc., Providence, RI 1967 | MR | Zbl
[4] Calvo T., Mayor, G., (eds.) R. Mesiar: Aggregation Operators. New Trends and Applications. (Studies in Fuzziness and Soft Computing, Vol. 97.) Physica-Verlag, Heidelberg 2002 | MR | Zbl
[5] Deschrijver G., Kerre E. E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems 133 (2003), 227–235 | MR | Zbl
[6] Deschrijver G., Kerre E. E.: Implicators based on binary aggregation operators in interval-valued fuzzy set theory. Fuzzy Sets and Systems 153 (2005), 229–248 | MR | Zbl
[7] Deschrijver G., Kerre E. E.: Triangular norms and related operators in L$^{\ast }$-fuzzy set theory. In: Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms (E. P. Klement and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 231–259 | MR | Zbl
[8] Dubois D., Prade H.: Fuzzy Sets and Systems. Theory and Applications. Academic Press, New York 1980 | MR | Zbl
[9] Fodor J. C., Yager R. R., Rybalov A.: Structure of uninorms. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997), 411–427 | DOI | MR | Zbl
[10] Höhle U., (eds.) S. E. Rodabaugh: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory. Kluwer Academic Publishers, Boston 1999 | MR | Zbl
[11] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Vol. 8 of Trends in Logic. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl
[12] Lázaro J., Calvo T.: XAO Operators – The interval universe. In: Proc. 4th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2005), pp. 198–203
[13] Mizumoto M., Tanaka K.: Some properties of fuzzy sets of type 2. Inform. and Control 31 (1976), 312–340 | DOI | MR | Zbl
[14] Sambuc R.: Fonctions $\Phi $-floues. Application à l’aide au diagnostic en pathologie thyroidienne, Ph. D. Thesis, Université de Marseille 1975
[15] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 10 (2002), 11–35 | DOI | MR | Zbl
[16] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, New York 1983 | MR | Zbl
[17] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338–353 | DOI | MR | Zbl