The least trimmed squares. Part II: $\sqrt{n}$-consistency
Kybernetika, Tome 42 (2006) no. 2, pp. 181-202
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
$\sqrt{n}$-consistency of the least trimmed squares estimator is proved under general conditions. The proof is based on deriving the asymptotic linearity of normal equations.
$\sqrt{n}$-consistency of the least trimmed squares estimator is proved under general conditions. The proof is based on deriving the asymptotic linearity of normal equations.
Classification :
62F12, 62F35, 62F40, 62J05
Keywords: robust regression; the least trimmed squares; $\sqrt{n}$-consistency; asymptotic normality
Keywords: robust regression; the least trimmed squares; $\sqrt{n}$-consistency; asymptotic normality
@article{KYB_2006_42_2_a4,
author = {V{\'\i}\v{s}ek, Jan \'Amos},
title = {The least trimmed squares. {Part} {II:} $\sqrt{n}$-consistency},
journal = {Kybernetika},
pages = {181--202},
year = {2006},
volume = {42},
number = {2},
mrnumber = {2241784},
zbl = {1248.62034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_2_a4/}
}
Víšek, Jan Ámos. The least trimmed squares. Part II: $\sqrt{n}$-consistency. Kybernetika, Tome 42 (2006) no. 2, pp. 181-202. http://geodesic.mathdoc.fr/item/KYB_2006_42_2_a4/
[1] Čížek P.: Analýza citlivosti $k$-krokových $M$-odhadů (Sensitivity analysis of $k$-step $M$-estimators, in Czech). Diploma Thesis, Czech Technical University, Prague 1996
[2] Hewitt E., Stromberg K.: Real and Abstract Analysis. Springer–Verlag, Berlin 1965 | MR | Zbl
[3] Víšek J. Á.: Sensitivity analysis $M$-estimates. Ann. Inst. Statist. Math. 48 (1996), 469–495 | DOI | MR
[4] Víšek J. Á.: The least trimmed squares. Part I. Consistency. Kybernetika 42 (2006), 1–36 | MR
[5] Víšek J. Á.: Kolmogorov–Smirnov statistics in linear regression. In: Proc. ROBUST 2006, submitted