The least trimmed squares. Part II: $\sqrt{n}$-consistency
Kybernetika, Tome 42 (2006) no. 2, pp. 181-202 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

$\sqrt{n}$-consistency of the least trimmed squares estimator is proved under general conditions. The proof is based on deriving the asymptotic linearity of normal equations.
$\sqrt{n}$-consistency of the least trimmed squares estimator is proved under general conditions. The proof is based on deriving the asymptotic linearity of normal equations.
Classification : 62F12, 62F35, 62F40, 62J05
Keywords: robust regression; the least trimmed squares; $\sqrt{n}$-consistency; asymptotic normality
@article{KYB_2006_42_2_a4,
     author = {V{\'\i}\v{s}ek, Jan \'Amos},
     title = {The least trimmed squares. {Part} {II:} $\sqrt{n}$-consistency},
     journal = {Kybernetika},
     pages = {181--202},
     year = {2006},
     volume = {42},
     number = {2},
     mrnumber = {2241784},
     zbl = {1248.62034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_2_a4/}
}
TY  - JOUR
AU  - Víšek, Jan Ámos
TI  - The least trimmed squares. Part II: $\sqrt{n}$-consistency
JO  - Kybernetika
PY  - 2006
SP  - 181
EP  - 202
VL  - 42
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2006_42_2_a4/
LA  - en
ID  - KYB_2006_42_2_a4
ER  - 
%0 Journal Article
%A Víšek, Jan Ámos
%T The least trimmed squares. Part II: $\sqrt{n}$-consistency
%J Kybernetika
%D 2006
%P 181-202
%V 42
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2006_42_2_a4/
%G en
%F KYB_2006_42_2_a4
Víšek, Jan Ámos. The least trimmed squares. Part II: $\sqrt{n}$-consistency. Kybernetika, Tome 42 (2006) no. 2, pp. 181-202. http://geodesic.mathdoc.fr/item/KYB_2006_42_2_a4/

[1] Čížek P.: Analýza citlivosti $k$-krokových $M$-odhadů (Sensitivity analysis of $k$-step $M$-estimators, in Czech). Diploma Thesis, Czech Technical University, Prague 1996

[2] Hewitt E., Stromberg K.: Real and Abstract Analysis. Springer–Verlag, Berlin 1965 | MR | Zbl

[3] Víšek J. Á.: Sensitivity analysis $M$-estimates. Ann. Inst. Statist. Math. 48 (1996), 469–495 | DOI | MR

[4] Víšek J. Á.: The least trimmed squares. Part I. Consistency. Kybernetika 42 (2006), 1–36 | MR

[5] Víšek J. Á.: Kolmogorov–Smirnov statistics in linear regression. In: Proc. ROBUST 2006, submitted