Keywords: lattice effect algebra; sharp and central element; block; state; subdirect decomposition; MacNeille completion
@article{KYB_2006_42_2_a1,
author = {Rie\v{c}anov\'a, Zdenka},
title = {Archimedean atomic lattice effect algebras in which all sharp elements are central},
journal = {Kybernetika},
pages = {143--150},
year = {2006},
volume = {42},
number = {2},
mrnumber = {2241781},
zbl = {1249.03121},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_2_a1/}
}
Riečanová, Zdenka. Archimedean atomic lattice effect algebras in which all sharp elements are central. Kybernetika, Tome 42 (2006) no. 2, pp. 143-150. http://geodesic.mathdoc.fr/item/KYB_2006_42_2_a1/
[1] Chang C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490 | DOI | MR | Zbl
[2] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht – Boston – London and Ister Science, Bratislava 2000 | MR
[3] Foulis D., Bennett M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331–1352 | DOI | MR
[4] Greechie R. J.: Orthomodular lattices admitting no states. J. Combin. Theory Ser. A 10 (1971), 119–132 | DOI | MR | Zbl
[5] Greechie R. J., Foulis, D., Pulmannová S.: The center of an effect algebra. Order 12 (1995), 91–106 | DOI | MR | Zbl
[6] Jenča G., Riečanová Z.: On sharp elements in lattice effect algebras. BUSEFAL 80 (1999), 24–29
[7] Kôpka F., Chovanec F.: $D$-posets. Math. Slovaca 44 (1994), 21–34 | MR | Zbl
[8] Riečanová Z.: MacNeille completions of $D$-posets and effect algebras. Internat. J. Theor. Phys. 39 (2000), 859–869 | DOI | MR | Zbl
[9] Riečanová Z.: Generalization of blocks for $D$-lattices and lattice ordered effect algebras. Internat. J. Theor. Phys. 39 (2000), 231–237 | DOI | MR | Zbl
[10] Riečanová Z.: Archimedean and block-finite lattice effect algebras. Demonstratio Math. 33 (2000), 443–452 | MR
[11] Riečanová Z.: Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 3, 525–532 | MR
[12] Riečanová Z.: Proper effect algebras admitting no states. Internat. J. Theor. Phys. 40 40 (2001), 1683–1691 | DOI | MR | Zbl
[13] Riečanová Z.: Smearings of states defined on sharp elements onto effect algebras. Internat. J. Theor. Phys. 41 (2002), 1511–1524 | DOI | MR
[14] Riečanová Z.: Continuous effect algebra admitting order-continuous states. Fuzzy Sets and Systems 136 (2003), 41–54 | DOI | MR
[15] Riečanová Z.: Distributive atomic effect algebras. Demonstratio Math. 36 (2003), 247–259 | MR
[16] Riečanová Z.: Subdirect decompositions of lattice effect algebras. Internat. J. Theor. Phys. 42 (2003), 1425–1433 | DOI | MR
[17] Riečanová Z.: Modular atomic effect algebras and the existence of subadditive states. Kybernetika 40 (2004), 459–468 | MR
[18] Schmidt J.: Zur Kennzeichnung der Dedekind–MacNeilleschen Hulle einer geordneten Menge. Arch. Math. 17 (1956), 241–249 | DOI | MR