Keywords: robust control; linear polytopic systems; output feedback; LMI approach
@article{KYB_2006_42_1_a4,
author = {Vesel\'y, Vojtech},
title = {Robust controller design for linear polytopic systems},
journal = {Kybernetika},
pages = {95--110},
year = {2006},
volume = {42},
number = {1},
mrnumber = {2208522},
zbl = {1249.93138},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_1_a4/}
}
Veselý, Vojtech. Robust controller design for linear polytopic systems. Kybernetika, Tome 42 (2006) no. 1, pp. 95-110. http://geodesic.mathdoc.fr/item/KYB_2006_42_1_a4/
[1] Apkarian P., Feron, E., Gahinet P.: Parameter-dependent Lyapunov functions for robust control of systems with real parametric uncertainty. In: Proc. 3rd EEC, Rome 1995, pp. 2275–2280
[2] Bachelier O., Bernussou J., Oliveira M. C. de, Geromel J. C.: Parameter dependent Lyapunov control design: Numerical evaluation. In: Proc. 38th Conference on DC, Phoenix 1999, Arizona, pp. 293–297
[3] Jr. R. J. Benton, Smith D.: A non iterative LMI based algorithm for robust static output feedback stabilization. Internat. J. Control 72 (1999), 14, 1322–1330 | DOI | MR | Zbl
[4] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia 1994 | MR | Zbl
[5] Chilali M., Gahinet, P., Apkarian P.: Robust pole placement in LMI region. IEEE Trans. Automat. Control 44 (1999), 12, 2257–2267 | DOI | MR
[6] Dettori M., Scherer W. C.: New robust stability and performance conditions based on parameter dependent multiplier. In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, CD-ROM
[7] Gahinet P., Apkarian, P., Chilali M.: Affine parameter-dependent Lyapunov functions and real parametric uncertainty. IEEE Trans. Circuits and Systems 41 (1996), 3, 436–442 | MR | Zbl
[8] Grman L., Rosinová D., Kozáková, A., Veselý V.: Robust stability conditions for polytopic systems. Internat. J. System Sci. 36 (2005), 15, 961–973 | DOI | MR | Zbl
[9] Han J., Skelton R. E.: An LMI optimization approach for structured linear controllers. In: Proc. 42th IEEE Conference on Decision and Control, Maui 2003, pp. 5143–5148
[10] Henrion D., Alzelier, D., Peaucelle D.: Positive polynomial matrices and improved robustness conditions. In: 15th Triennial World Congress of the International Federation of Automatic Control, Barcelona 2002, CD-ROM
[11] Henrion D., Sagimoto,, Kenji, Šebek M.: Rank-one LMI approach to robust stability of polynomial matrices. Kybernetika 38 (2002), 5, 643–656 | MR
[12] Kučera V., Souza C. E. De: A necessary and sufficient conditions for output feedback stabilizability. Automatica 31 (1995), 9, 1357–1359 | DOI | MR
[13] Oliveira M. C. de, Bernussou, J., Geromel J. C.: A new discrete–time robust stability condition. Systems Control Lett. 37 (1999), 261–265 | DOI | MR | Zbl
[14] Oliveira M. C. de, Camino J. F., Skelton R. E.: A convexifying algorithm for the design of structured linear controllers. In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 2781–2786
[15] Peaucelle D., Arzelier D., Bachelier O., Bernussou J.: A new robust D-stability condition for real convex polytopic uncertainty. Systems Control Lett. 40 (2000), 21–30 | DOI | MR | Zbl
[16] Rosinová D., Veselý V.: Robust output feedback design of linear discrete–time systems: LMI Approach. In: 4th IFAC Symposium on Robust Control Design, Milano 2003, CD-ROM
[17] Skelton R. E., Iwasaki, T., Grigoriadis K.: A Unified Algebraic Approach to Linear Control Design. Taylor and Francis, London 1998 | MR
[18] Takahashi R. H. C., Ramos D. C. W., Peres P. L. D.: Robust control synthesis via a genetic algorithm and LMI’s. In: 15th Triennial World Congress of the International Federation of Automatic Control, Barcelona 2002, CD-ROM
[19] Veselý V.: Static output feedback controller design. Kybernetika 37 (2001), 2, 205–221 | MR
[20] Veselý V.: Robust output feedback control synthesis: LMI approach. In: 3rd IFAC Conference on Control System Design, Bratislava 2003, CD-ROM
[21] Cao, Yong Yan, Sun, You Xian: Static Output feedback simultaneous stabilization. LMI approach. Internat. J. Control 70 (1998), 5, 803–814 | DOI | MR | Zbl