Keywords: free lunch; free lunch in the limit; fundamental theorem of asset pricing; incomplete markets; arbitrage pricing; multistage stochastic programming; conjugate duality; finitely-additive measures
@article{KYB_2006_42_1_a2,
author = {Henclov\'a, Alena},
title = {Notes on free lunch in the limit and pricing by conjugate duality theory},
journal = {Kybernetika},
pages = {57--76},
year = {2006},
volume = {42},
number = {1},
mrnumber = {2208520},
zbl = {1249.90180},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_1_a2/}
}
Henclová, Alena. Notes on free lunch in the limit and pricing by conjugate duality theory. Kybernetika, Tome 42 (2006) no. 1, pp. 57-76. http://geodesic.mathdoc.fr/item/KYB_2006_42_1_a2/
[1] Castaing C., Valadier M.: Convex Analysis and Measurable Multifunctions. (Lecture Notes in Mathematics 580.) Springer–Verlag, Berlin 1977 | DOI | MR | Zbl
[2] Delbaen F., Schachermayer W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300 (1994), 463–520 | DOI | MR | Zbl
[3] Dybvig P. H., Ross S. A.: Arbitrage. In: A Dictionary of Economics, Vol. 1 (J. Eatwell, M. Milgate, and P. Newman, eds.), Macmillan Press, London 1987, pp. 100–106
[4] Eisner M. J., Olsen P.: Duality for stochastic programs interpreted as L. P. in $L_p$-space. SIAM J. Appl. Math. 28 (1975), 779–792 | DOI | MR
[5] Föllmer H., Schied A.: Stochastic Finance. An Introduction in Discrete Time. Walter de Gruyter, Berlin 2002 | MR | Zbl
[6] Henclová A.: Characterization of arbitrage-free market. Bulletin Czech Econom. Soc. 10 (2003), No. 19, 109–117
[7] Hewitt E., Stromberg K.: Real and Abstract Analysis. Third edition. Springer Verlag, Berlin 1975 | MR | Zbl
[8] King A.: Duality and martingales: A stochastic programming perspective on contingent claims. Math. Programming, Ser. B 91 (2002), 543–562 | DOI | MR | Zbl
[9] King A., Korf L.: Martingale pricing measures in incomplete markets via stochastic programming duality in the dual of $L^\infty $. SPEPS, 2001–13 (available at http://dochost.rz.hu-berlin.de/speps)
[10] Naik V.: Finite state securities market models and arbitrage. In: Handbooks in Operations Research and Management Science, Vol. 9, Finance (R. Jarrow, V. Maksimovic, and W. Ziemba, eds.), Elsevier, Amsterdam 1995, pp. 31–64
[11] Pennanen T., King A.: Arbitrage pricing of American contingent claims in incomplete markets – a convex optimization approach. SPEPS, 2004–14 (available at http://dochost.rz.hu-berlin.de/speps)
[12] Pliska S. R.: Introduction to Mathematical Finance, Discrete Time Models. Blackwell Publishers, Oxford 1999
[13] Rockafellar R. T.: Conjugate Duality and Optimization. SIAM/CBMS monograph series No. 16, SIAM Publications, Philadelphia 1974 | MR | Zbl
[14] Rockafellar R. T., Wets R. J.-B.: Nonanticipativity and $Ł^1$-martingales in stochastic optimization problems. Math. Programming Stud. 6 (1976), 170–187 | DOI | MR
[15] Rockafellar R. T., Wets R. J.-B.: Stochastic convex programming: Basic duality. Pacific J. Math. 62 (1976), 173–195 | DOI | MR | Zbl
[16] Rockafellar R. T., Wets R. J.-B.: Stochastic convex programming: Singular multipliers and extended duality. Pacific J. Math. 62 (1976), 507–522 | DOI | MR | Zbl
[17] Rockafellar R. T., Wets R. J.-B.: Stochastic convex programming: Relatively complete recourse and induced feasibility. SIAM J. Control Optim. 14 (1976), 574–589 | DOI | MR | Zbl