Keywords: Markov chains; monotonicity; nonnegative matrices
@article{KYB_2006_42_1_a1,
author = {Dijk, Nico M. van and Sladk\'y, Karel},
title = {Monotonicity and comparison results for nonnegative dynamic systems. {Part} {I:} {Discrete-time} case},
journal = {Kybernetika},
pages = {37--56},
year = {2006},
volume = {42},
number = {1},
mrnumber = {2208519},
zbl = {1249.60168},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006_42_1_a1/}
}
TY - JOUR AU - Dijk, Nico M. van AU - Sladký, Karel TI - Monotonicity and comparison results for nonnegative dynamic systems. Part I: Discrete-time case JO - Kybernetika PY - 2006 SP - 37 EP - 56 VL - 42 IS - 1 UR - http://geodesic.mathdoc.fr/item/KYB_2006_42_1_a1/ LA - en ID - KYB_2006_42_1_a1 ER -
Dijk, Nico M. van; Sladký, Karel. Monotonicity and comparison results for nonnegative dynamic systems. Part I: Discrete-time case. Kybernetika, Tome 42 (2006) no. 1, pp. 37-56. http://geodesic.mathdoc.fr/item/KYB_2006_42_1_a1/
[1] Adan I. J. B. F., Wal J. van der: Monotonicity of the throughput in single server production and assembly networks with respect to buffer sizes. In: Queueing Networks with Blocking, North Holland, Amsterdam 1989, pp. 345–356
[2] Adan I. J. B. F., Wal J. van der: Monotonicity of the throughput of a closed queueing network in the number of jobs. Oper. Res. 37 (1989), 953–957 | DOI | MR
[3] Dijk N. M. van, Puterman M.: Perturbation theory for Markov reward processes with applications to queueing systems. Adv. in Appl. Probab. 20 (1988), 79–87 | DOI | MR
[4] Dijk N. M. van, Wal J. van der: Simple bounds and monotonicity results for multi-server exponential tandem queues. Queueing Systems 4 (1989), 1–16 | DOI
[5] Dijk N. M. van: On the importance of bias-terms for error bounds and comparison results. In: Numerical Solution of Markov Chains (W. J. Stewart, ed.), Marcel Dekker, New York 1991, pp. 640–654 | MR
[6] Dijk N. M. van: Bounds and error bounds for queueing networks. Ann. Oper. Res. 36 (2003), 3027–3030
[7] Dijk N. M. van: Queuing Networks and Product Forms. Wiley, New York 1993 | MR
[8] Dijk N. M. van, Sladký K.: Error bounds for dynamic nonnegative systems. J. Optim. Theory Appl. 101 (1999), 449–474 | DOI | MR
[9] Dijk N. M. van, Sladký K.: Monotonicity and comparison results for nonnegative dynamic systems. Part II: Continuous-time case and reliability application. Kybernetika 42 (2006), No. 2 (to appear)
[10] Dijk N. M. van, Taylor P. G.: On strong stochastic comparison for steady state measures of Markov chains with a performability application. Oper. Res. 36 (2003), 3027–3030
[11] Gross D., Miller D. R.: The randomization technique as a modelling tool and solution procedure over discrete state Markov processes. Oper. Res. 32 (1984), 343–361 | DOI | MR
[12] Keilson J., Kester A.: Monotone matrices and monotone Markov processes. Stoch. Process. Appl. 5 (1977), 231–241 | DOI | MR | Zbl
[13] Massey W. A.: Stochastic ordering for Markov processes on partially ordered spaces. Math. Oper. Res. 12 (1987), 350–367 | DOI | MR
[14] Melamed B., Yadin N.: Randomization procedures in the computation of cumulative-time distributions over discrete state Markov processes. Oper. Res. 32 (1984), 926–943 | DOI | MR | Zbl
[15] Shantikumar J. G., Yao D. D.: Monotonicity proporties in cyclic queueing networks with finite buffers. In: Queueing Networks with Blocking, North Holland, Amsterdam 1989, pp. 345–356
[16] Sladký K.: Bounds on discrete dynamic programming recursions I. Kybernetika 16 (1980), 526–547 | MR | Zbl
[17] Stoyan D.: Comparison Methods for Queues and Other Stochastic Models. Wiley, New York 1983 | MR | Zbl
[18] Tsoucas P., Walrand J.: Monotonicity of throughput in non-Markovian networks. J. Appl. Probab. 26 (1989), 134–141 | DOI | MR | Zbl
[19] Whitt W.: Comparing counting processes and queues. Adv. in Appl. Probab. 13 (1981), 207–220 | DOI | MR | Zbl
[20] Whitt W.: Stochastic comparison for non-Markov processes. Math. Oper. Res. 11 (1986), 608–618 | DOI | MR