Keywords: stochastically ordered Markov chains; Lyapunov condition; invariant probability; average Markov decision processes
@article{KYB_2005_41_6_a5,
author = {Montes-de-Oca, Ra\'ul and Salem-Silva, Francisco},
title = {Estimates for perturbations of average {Markov} decision processes with a minimal state and upper bounded by stochastically ordered {Markov} chains},
journal = {Kybernetika},
pages = {757--772},
year = {2005},
volume = {41},
number = {6},
mrnumber = {2193864},
zbl = {1249.90313},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a5/}
}
TY - JOUR AU - Montes-de-Oca, Raúl AU - Salem-Silva, Francisco TI - Estimates for perturbations of average Markov decision processes with a minimal state and upper bounded by stochastically ordered Markov chains JO - Kybernetika PY - 2005 SP - 757 EP - 772 VL - 41 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a5/ LA - en ID - KYB_2005_41_6_a5 ER -
%0 Journal Article %A Montes-de-Oca, Raúl %A Salem-Silva, Francisco %T Estimates for perturbations of average Markov decision processes with a minimal state and upper bounded by stochastically ordered Markov chains %J Kybernetika %D 2005 %P 757-772 %V 41 %N 6 %U http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a5/ %G en %F KYB_2005_41_6_a5
Montes-de-Oca, Raúl; Salem-Silva, Francisco. Estimates for perturbations of average Markov decision processes with a minimal state and upper bounded by stochastically ordered Markov chains. Kybernetika, Tome 41 (2005) no. 6, pp. 757-772. http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a5/
[1] Favero F., Runglandier W. J.: A robustness result for stochastic control. Systems Control Lett. 46 (2002), 91–97 | DOI | MR
[2] Gordienko E. I.: An estimate of the stability of optimal control of certain stochastic and deterministic systems. J. Soviet Math. 50 (1992), 891–899 | DOI | MR
[3] Gordienko E. I.: Lecture Notes on Stability Estimation in Markov Decision Processes. Universidad Autónoma Metropolitana, México D.F., 1994
[4] Gordienko E. I., Hernández-Lerma O.: Average cost Markov control processes with weighted norms: value iteration. Appl. Math. 23 (1995), 219–237 | MR | Zbl
[5] Gordienko E. I., Salem-Silva F. S.: Robustness inequality for Markov control processes with unbounded costs. Systems Control Lett. 33 (1998), 125–130 | DOI | MR
[6] Gordienko E. I., Salem-Silva F. S.: Estimates of stability of Markov control processes with unbounded costs. Kybernetika 36 (2000), 2, 195–210 | MR
[7] Hernández-Lerma O.: Adaptive Markov Control Processes. Springer–Verlag, New York 1989 | MR
[8] Hernández-Lerma O., Lasserre J. B.: Further Topics on Discrete-Time Markov Control Processes. Springer–Verlag, New York 1999 | MR | Zbl
[9] Hinderer K.: Foundations of Non-stationary Dynamic Programming with Discrete Time Parameter. (Lectures Notes in Operations Research and Mathematical Systems 33.) Springer–Verlag, Berlin – Heidelberg – New York 1970 | MR | Zbl
[10] Lindvall T.: Lectures on the Coupling Method. (Wiley Series in Probability and Mathematical Statistics.) Wiley, New York 1992 | MR | Zbl
[11] Lund R.: The geometric convergence rates of a Lindley random walk. J. Appl. Probab. 34 (1997), 806–811 | DOI | MR
[12] Lund R., Tweedie R.: Geometric convergence rates for stochastically ordered Markov chains. Math. Oper. Res. 20 (1996), 182–194 | DOI | MR | Zbl
[13] Meyn S., Tweedie R.: Markov Chains and Stochastic Stability. Springer–Verlag, New York 1993 | MR | Zbl
[14] Montes-de-Oca R., Sakhanenko, A., Salem-Silva F.: Estimates for perturbations of general discounted Markov control chains. Appl. Math. 30 (2003), 3, 287–304 | MR | Zbl
[15] Nummelin E.: General Irreducible Markov Chains and Non-negative Operators. Cambrigde University Press, Cambridge 1984 | MR | Zbl
[16] Rachev S. T.: Probability Metrics and the Stability of Stochastic Models. Wiley, New York 1991 | MR | Zbl
[17] Zolotarev V. M.: On stochastic continuity of queueing systems of type G/G/1. Theory Probab. Appl. 21 (1976), 250–269 | MR | Zbl