On invertibility of a random coefficient moving average model
Kybernetika, Tome 41 (2005) no. 6, pp. 743-756 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A linear moving average model with random coefficients (RCMA) is proposed as more general alternative to usual linear MA models. The basic properties of this model are obtained. Although some model properties are similar to linear case the RCMA model class is too general to find general invertibility conditions. The invertibility of some special examples of RCMA(1) model are investigated in this paper.
A linear moving average model with random coefficients (RCMA) is proposed as more general alternative to usual linear MA models. The basic properties of this model are obtained. Although some model properties are similar to linear case the RCMA model class is too general to find general invertibility conditions. The invertibility of some special examples of RCMA(1) model are investigated in this paper.
Classification : 60G10, 62M09, 62M10
Keywords: non-linear time series; invertibility; random coefficient moving average
@article{KYB_2005_41_6_a4,
     author = {Marek, Tom\'a\v{s}},
     title = {On invertibility of a random coefficient moving average model},
     journal = {Kybernetika},
     pages = {743--756},
     year = {2005},
     volume = {41},
     number = {6},
     mrnumber = {2193863},
     zbl = {1248.62154},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a4/}
}
TY  - JOUR
AU  - Marek, Tomáš
TI  - On invertibility of a random coefficient moving average model
JO  - Kybernetika
PY  - 2005
SP  - 743
EP  - 756
VL  - 41
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a4/
LA  - en
ID  - KYB_2005_41_6_a4
ER  - 
%0 Journal Article
%A Marek, Tomáš
%T On invertibility of a random coefficient moving average model
%J Kybernetika
%D 2005
%P 743-756
%V 41
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a4/
%G en
%F KYB_2005_41_6_a4
Marek, Tomáš. On invertibility of a random coefficient moving average model. Kybernetika, Tome 41 (2005) no. 6, pp. 743-756. http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a4/

[1] Granger C. W. J., Andersen A. P.: An Introduction to Bilinear Time Series Models. Vandenhoek and Ruprecht, Gottingen 1978 | MR | Zbl

[2] Granger C. W. J., Andersen A. P.: On the invertibility of time series models. Stochastic Process. Appl. 8 (1978), 87–92 | MR | Zbl

[3] Marek T.: Maximum likelihood estimation in the simple NLMA model. In: Proc. WDS’99 (J. Šafránková, ed.), Matfyzpress, Praha 1999, pp. 28–33

[4] McKenzie E.: Product autoregression: a time-series characterization of the gamma distribution. J. Appl. Probab. 19 (1982), 463–468 | DOI | MR | Zbl

[5] Robinson P. M.: The estimation of a nonlinear moving average models. Stochastic Process. Appl. 5 (1977), 81–90 | MR

[6] Štěpán J.: Probability Theory (in Czech). Academia, Praha 1986

[7] Tjøstheim D.: Some doubly stochastic time series models. J. Time Ser. Anal. 7 (1986), 51–72 | DOI | MR

[8] Tong H.: Nonlinear Time Series. Clarendon Press, Oxford 1990 | MR | Zbl