Keywords: non-linear time series; invertibility; random coefficient moving average
@article{KYB_2005_41_6_a4,
author = {Marek, Tom\'a\v{s}},
title = {On invertibility of a random coefficient moving average model},
journal = {Kybernetika},
pages = {743--756},
year = {2005},
volume = {41},
number = {6},
mrnumber = {2193863},
zbl = {1248.62154},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a4/}
}
Marek, Tomáš. On invertibility of a random coefficient moving average model. Kybernetika, Tome 41 (2005) no. 6, pp. 743-756. http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a4/
[1] Granger C. W. J., Andersen A. P.: An Introduction to Bilinear Time Series Models. Vandenhoek and Ruprecht, Gottingen 1978 | MR | Zbl
[2] Granger C. W. J., Andersen A. P.: On the invertibility of time series models. Stochastic Process. Appl. 8 (1978), 87–92 | MR | Zbl
[3] Marek T.: Maximum likelihood estimation in the simple NLMA model. In: Proc. WDS’99 (J. Šafránková, ed.), Matfyzpress, Praha 1999, pp. 28–33
[4] McKenzie E.: Product autoregression: a time-series characterization of the gamma distribution. J. Appl. Probab. 19 (1982), 463–468 | DOI | MR | Zbl
[5] Robinson P. M.: The estimation of a nonlinear moving average models. Stochastic Process. Appl. 5 (1977), 81–90 | MR
[6] Štěpán J.: Probability Theory (in Czech). Academia, Praha 1986
[7] Tjøstheim D.: Some doubly stochastic time series models. J. Time Ser. Anal. 7 (1986), 51–72 | DOI | MR
[8] Tong H.: Nonlinear Time Series. Clarendon Press, Oxford 1990 | MR | Zbl