Stationary distribution of absolute autoregression
Kybernetika, Tome 41 (2005) no. 6, pp. 735-742 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A procedure for computation of stationary density of the absolute autoregression (AAR) model driven by white noise with symmetrical density is described. This method is used for deriving explicit formulas for stationary distribution and further characteristics of AAR models with given distribution of white noise. The cases of Gaussian, Cauchy, Laplace and discrete rectangular distribution are investigated in detail.
A procedure for computation of stationary density of the absolute autoregression (AAR) model driven by white noise with symmetrical density is described. This method is used for deriving explicit formulas for stationary distribution and further characteristics of AAR models with given distribution of white noise. The cases of Gaussian, Cauchy, Laplace and discrete rectangular distribution are investigated in detail.
Classification : 60G10, 62M05, 62M10
Keywords: absolute autoregression; stationary distribution; marginal distribution
@article{KYB_2005_41_6_a3,
     author = {And\v{e}l, Ji\v{r}{\'\i} and Ranocha, Pavel},
     title = {Stationary distribution of absolute autoregression},
     journal = {Kybernetika},
     pages = {735--742},
     year = {2005},
     volume = {41},
     number = {6},
     mrnumber = {2193862},
     zbl = {1249.60067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a3/}
}
TY  - JOUR
AU  - Anděl, Jiří
AU  - Ranocha, Pavel
TI  - Stationary distribution of absolute autoregression
JO  - Kybernetika
PY  - 2005
SP  - 735
EP  - 742
VL  - 41
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a3/
LA  - en
ID  - KYB_2005_41_6_a3
ER  - 
%0 Journal Article
%A Anděl, Jiří
%A Ranocha, Pavel
%T Stationary distribution of absolute autoregression
%J Kybernetika
%D 2005
%P 735-742
%V 41
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a3/
%G en
%F KYB_2005_41_6_a3
Anděl, Jiří; Ranocha, Pavel. Stationary distribution of absolute autoregression. Kybernetika, Tome 41 (2005) no. 6, pp. 735-742. http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a3/

[1] Anděl J.: Dependent random variables with a given marginal distribution. Acta Univ. Carolin. – Math. Phys. 24 (1983), 3–12 | MR

[2] Anděl J.: Marginal distributions of autoregressive processes. In: Trans. 9th Prague Conference Inform. Theory, Statist. Dec. Functions, Random Processes. Academia, Praha 1983 | MR | Zbl

[3] Anděl J., Bartoň T.: A note on the threshold AR(1) model with Cauchy innovations. J. Time Ser. Anal. 7 (1986), 1–5 | DOI | MR | Zbl

[4] Anděl J., Netuka, I., Zvára K.: On threshold autoregressive processes. Kybernetika 20 (1984), 89–106 | MR | Zbl

[5] Chan K. S., Tong H.: A note on certain integral equations associated with non-linear time series analysis. Probab. Theory Related Fields 73 (1986), 153–159 | DOI | MR

[6] Loges W.: The stationary marginal distribution of a threshold AR(1) process. J. Time Ser. Anal. 25 (2004), 103–125 | DOI | MR | Zbl

[7] Tong H.: Non-Linear Time Series. Clarendon Press, Oxford 1990 | Zbl