Keywords: absolute autoregression; stationary distribution; marginal distribution
@article{KYB_2005_41_6_a3,
author = {And\v{e}l, Ji\v{r}{\'\i} and Ranocha, Pavel},
title = {Stationary distribution of absolute autoregression},
journal = {Kybernetika},
pages = {735--742},
year = {2005},
volume = {41},
number = {6},
mrnumber = {2193862},
zbl = {1249.60067},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a3/}
}
Anděl, Jiří; Ranocha, Pavel. Stationary distribution of absolute autoregression. Kybernetika, Tome 41 (2005) no. 6, pp. 735-742. http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a3/
[1] Anděl J.: Dependent random variables with a given marginal distribution. Acta Univ. Carolin. – Math. Phys. 24 (1983), 3–12 | MR
[2] Anděl J.: Marginal distributions of autoregressive processes. In: Trans. 9th Prague Conference Inform. Theory, Statist. Dec. Functions, Random Processes. Academia, Praha 1983 | MR | Zbl
[3] Anděl J., Bartoň T.: A note on the threshold AR(1) model with Cauchy innovations. J. Time Ser. Anal. 7 (1986), 1–5 | DOI | MR | Zbl
[4] Anděl J., Netuka, I., Zvára K.: On threshold autoregressive processes. Kybernetika 20 (1984), 89–106 | MR | Zbl
[5] Chan K. S., Tong H.: A note on certain integral equations associated with non-linear time series analysis. Probab. Theory Related Fields 73 (1986), 153–159 | DOI | MR
[6] Loges W.: The stationary marginal distribution of a threshold AR(1) process. J. Time Ser. Anal. 25 (2004), 103–125 | DOI | MR | Zbl
[7] Tong H.: Non-Linear Time Series. Clarendon Press, Oxford 1990 | Zbl