Keywords: multisample rank test for location and scale; Lepage statistic; consistency; non-centrality parameter; multiple comparisons for location and scale parameters
@article{KYB_2005_41_6_a2,
author = {Rubl{\'\i}k, Franti\v{s}ek},
title = {The multisample version of the {Lepage} test},
journal = {Kybernetika},
pages = {713--733},
year = {2005},
volume = {41},
number = {6},
mrnumber = {2193861},
zbl = {1245.62047},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a2/}
}
Rublík, František. The multisample version of the Lepage test. Kybernetika, Tome 41 (2005) no. 6, pp. 713-733. http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a2/
[1] Ansari A. R., Bradley R. A.: Rank-sum test for dispersions. Ann. Math. Statist. 31 (1960), 1174–1189 | DOI | MR
[2] Chernoff H., Savage I. R.: Asymptotic normality and efficiency of certain non-parametric test statistics. Ann. Math. Statist. 29 (1958), 972–994 | DOI | MR
[3] Conover W. J.: Practical Nonparametric Statistics. Wiley, New York 1999
[4] Critchlow D. E., Fligner M. A.: On distribution-free multiple comparisons in the one-way analysis of variance. Commun. Statist. Theory Meth. 20 (1991), 127–139 | DOI | MR
[5] Goria M. N., Vorlíčková D.: On the asymptotic properties of rank statistics for the two-sample location and scale problem. Aplikace matematiky 30 (1985), 425–434 | MR
[6] Govindajarulu Z., Cam, L. Le, Raghavachari M.: Generalizations of theorems of Chernoff and Savage on the asymptotic normality of test statistics. In: Proc. Fifth Berkeley Symposium on Math. Statist. and Probab., Vol. 1 (1966) (J. Neyman and L. Le Cam, eds.), Univ. of California Press, Berkeley 1967, pp. 609–638 | MR
[7] Hájek J., Šidák Z.: Theory of Rank Tests. Academia, Prague 1967 | MR | Zbl
[8] Harter H. L.: Tables of range and studentized range. Ann. Math. Statist. 31 (1960) 1122–1147 | DOI | MR | Zbl
[9] Hayter A. J.: A proof of the conjecture that the Tukey–Kramer multiple comparison procedure is conservative. Ann. Statist. 12 (1984), 61–75 | DOI | MR
[10] Hollander M., Wolfe D. A.: Nonparametric Statistical Methods. Wiley, New York 1999 | MR | Zbl
[11] Koziol J. A., Reid N.: On the asymptotic equivalence of two ranking methods for $k$-sample linear rank statistics. Ann. Statist. 5 (1977), 1099–1106 | DOI | MR | Zbl
[12] Kruskal W. H.: A nonparametric test for the several sample problem. Ann. Math. Statist. 23 (1952), 525–540 | DOI | MR | Zbl
[13] Kruskal W. H., Wallis W. A.: Use of ranks in one-criterion variance analysis. J. Amer. Statist. Assoc. 47 (1952), 583–621 | DOI | Zbl
[14] Lepage Y.: A combination of Wilcoxon’s and Ansari–Bradley’s statistics. Biometrika 58 (1971), 213–217 | DOI | MR | Zbl
[15] Lepage Y.: A table for a combined Wilcoxon Ansari–Bradley statistic. Biometrika 60 1973), 113–116 | DOI | MR | Zbl
[16] Mann H. B., Whitney D. R.: On a test whether one of two random variables is stochastically larger than the other. Ann. Math. Statist. 18 (1947), 50–60 | DOI | MR
[17] Miller R. G., Jr.: Simultaneous Statistical Inference. Second edition. Springer–Verlag, New York – Heidelberg 1985 | MR | Zbl
[18] Puri M. L.: On some tests of homogeneity of variances. Ann. Inst. Stat. Math. 17 (1965), 323–330 | DOI | MR | Zbl
[19] Puri M. L., Sen P. K.: Nonparametric Methods in Multivariate Analysis. Wiley, New York 1971 | MR | Zbl
[20] Rao C. R., Mitra S. K.: Generalised Inverse of Matrices and its Applications. Wiley, New York 1971 | MR
[21] Rublík F.: On optimality of the LR tests in the sense of exact slopes. Part II. Application to individual distributions. Kybernetika 25 (1989), 117–135 | MR | Zbl
[22] Rublík F.: Asymptotic distribution of the likelihood ratio test statistic in the multisample case. Math. Slovaca 49 (1999), 577–598 | MR | Zbl
[23] Tsai W. S., Duran B. S., Lewis T. O.: Small-sample behavior of some multisample nonparametric tests for scale. J. Amer. Statist. Assoc. 70 (1975), 791–796 | DOI | Zbl
[24] Wilcoxon F.: Individual comparisons by ranking methods. Biometrics Bull. 1 (1945), 80–83 | DOI