The multisample version of the Lepage test
Kybernetika, Tome 41 (2005) no. 6, pp. 713-733 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The two-sample Lepage test, devised for testing equality of the location and scale parameters against the alternative that at least for one of the parameters the equality does not hold, is extended to the general case of $k>1$ sampled populations. It is shown that its limiting distribution is the chi-square distribution with $2(k-1)$ degrees of freedom. This $k$-sample statistic is shown to yield consistent test and a formula for its noncentrality parameter under Pitman alternatives is derived. For some particular alternatives, the power of the $k$-sample test is compared with the power of the Kruskal–Wallis test or with the power of the Ansari–Bradley test by means of simulation estimates. Multiple comparison methods for detecting differing populations, based on this multisample version of the Lepage test or on the multisample version of the Ansari–Bradley test, are also constructed.
The two-sample Lepage test, devised for testing equality of the location and scale parameters against the alternative that at least for one of the parameters the equality does not hold, is extended to the general case of $k>1$ sampled populations. It is shown that its limiting distribution is the chi-square distribution with $2(k-1)$ degrees of freedom. This $k$-sample statistic is shown to yield consistent test and a formula for its noncentrality parameter under Pitman alternatives is derived. For some particular alternatives, the power of the $k$-sample test is compared with the power of the Kruskal–Wallis test or with the power of the Ansari–Bradley test by means of simulation estimates. Multiple comparison methods for detecting differing populations, based on this multisample version of the Lepage test or on the multisample version of the Ansari–Bradley test, are also constructed.
Classification : 62E20, 62G10, 62J15, 65C60
Keywords: multisample rank test for location and scale; Lepage statistic; consistency; non-centrality parameter; multiple comparisons for location and scale parameters
@article{KYB_2005_41_6_a2,
     author = {Rubl{\'\i}k, Franti\v{s}ek},
     title = {The multisample version of the {Lepage} test},
     journal = {Kybernetika},
     pages = {713--733},
     year = {2005},
     volume = {41},
     number = {6},
     mrnumber = {2193861},
     zbl = {1245.62047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a2/}
}
TY  - JOUR
AU  - Rublík, František
TI  - The multisample version of the Lepage test
JO  - Kybernetika
PY  - 2005
SP  - 713
EP  - 733
VL  - 41
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a2/
LA  - en
ID  - KYB_2005_41_6_a2
ER  - 
%0 Journal Article
%A Rublík, František
%T The multisample version of the Lepage test
%J Kybernetika
%D 2005
%P 713-733
%V 41
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a2/
%G en
%F KYB_2005_41_6_a2
Rublík, František. The multisample version of the Lepage test. Kybernetika, Tome 41 (2005) no. 6, pp. 713-733. http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a2/

[1] Ansari A. R., Bradley R. A.: Rank-sum test for dispersions. Ann. Math. Statist. 31 (1960), 1174–1189 | DOI | MR

[2] Chernoff H., Savage I. R.: Asymptotic normality and efficiency of certain non-parametric test statistics. Ann. Math. Statist. 29 (1958), 972–994 | DOI | MR

[3] Conover W. J.: Practical Nonparametric Statistics. Wiley, New York 1999

[4] Critchlow D. E., Fligner M. A.: On distribution-free multiple comparisons in the one-way analysis of variance. Commun. Statist. Theory Meth. 20 (1991), 127–139 | DOI | MR

[5] Goria M. N., Vorlíčková D.: On the asymptotic properties of rank statistics for the two-sample location and scale problem. Aplikace matematiky 30 (1985), 425–434 | MR

[6] Govindajarulu Z., Cam, L. Le, Raghavachari M.: Generalizations of theorems of Chernoff and Savage on the asymptotic normality of test statistics. In: Proc. Fifth Berkeley Symposium on Math. Statist. and Probab., Vol. 1 (1966) (J. Neyman and L. Le Cam, eds.), Univ. of California Press, Berkeley 1967, pp. 609–638 | MR

[7] Hájek J., Šidák Z.: Theory of Rank Tests. Academia, Prague 1967 | MR | Zbl

[8] Harter H. L.: Tables of range and studentized range. Ann. Math. Statist. 31 (1960) 1122–1147 | DOI | MR | Zbl

[9] Hayter A. J.: A proof of the conjecture that the Tukey–Kramer multiple comparison procedure is conservative. Ann. Statist. 12 (1984), 61–75 | DOI | MR

[10] Hollander M., Wolfe D. A.: Nonparametric Statistical Methods. Wiley, New York 1999 | MR | Zbl

[11] Koziol J. A., Reid N.: On the asymptotic equivalence of two ranking methods for $k$-sample linear rank statistics. Ann. Statist. 5 (1977), 1099–1106 | DOI | MR | Zbl

[12] Kruskal W. H.: A nonparametric test for the several sample problem. Ann. Math. Statist. 23 (1952), 525–540 | DOI | MR | Zbl

[13] Kruskal W. H., Wallis W. A.: Use of ranks in one-criterion variance analysis. J. Amer. Statist. Assoc. 47 (1952), 583–621 | DOI | Zbl

[14] Lepage Y.: A combination of Wilcoxon’s and Ansari–Bradley’s statistics. Biometrika 58 (1971), 213–217 | DOI | MR | Zbl

[15] Lepage Y.: A table for a combined Wilcoxon Ansari–Bradley statistic. Biometrika 60 1973), 113–116 | DOI | MR | Zbl

[16] Mann H. B., Whitney D. R.: On a test whether one of two random variables is stochastically larger than the other. Ann. Math. Statist. 18 (1947), 50–60 | DOI | MR

[17] Miller R. G., Jr.: Simultaneous Statistical Inference. Second edition. Springer–Verlag, New York – Heidelberg 1985 | MR | Zbl

[18] Puri M. L.: On some tests of homogeneity of variances. Ann. Inst. Stat. Math. 17 (1965), 323–330 | DOI | MR | Zbl

[19] Puri M. L., Sen P. K.: Nonparametric Methods in Multivariate Analysis. Wiley, New York 1971 | MR | Zbl

[20] Rao C. R., Mitra S. K.: Generalised Inverse of Matrices and its Applications. Wiley, New York 1971 | MR

[21] Rublík F.: On optimality of the LR tests in the sense of exact slopes. Part II. Application to individual distributions. Kybernetika 25 (1989), 117–135 | MR | Zbl

[22] Rublík F.: Asymptotic distribution of the likelihood ratio test statistic in the multisample case. Math. Slovaca 49 (1999), 577–598 | MR | Zbl

[23] Tsai W. S., Duran B. S., Lewis T. O.: Small-sample behavior of some multisample nonparametric tests for scale. J. Amer. Statist. Assoc. 70 (1975), 791–796 | DOI | Zbl

[24] Wilcoxon F.: Individual comparisons by ranking methods. Biometrics Bull. 1 (1945), 80–83 | DOI