On the optimal number of classes in the Pearson goodness-of-fit tests
Kybernetika, Tome 41 (2005) no. 6, pp. 677-698 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An asymptotic local power of Pearson chi-squared tests is considered, based on convex mixtures of the null densities with fixed alternative densities when the mixtures tend to the null densities for sample sizes $n\rightarrow \infty .$ This local power is used to compare the tests with fixed partitions $\mathcal{P}$ of the observation space of small partition sizes $|\mathcal{P}|$ with the tests whose partitions $\mathcal{P}=\mathcal{P}_{n}$ depend on $n$ and the partition sizes $|\mathcal{P}_{n}|$ tend to infinity for $n\rightarrow \infty $. New conditions are presented under which it is asymptotically optimal to let $|\mathcal{P}|$ tend to infinity with $n$ or to keep it fixed, respectively. Similar conditions are presented under which the tests with fixed $|\mathcal{P}|$ and those with increasing $|\mathcal{P}_{n}|$ are asymptotically equivalent.
An asymptotic local power of Pearson chi-squared tests is considered, based on convex mixtures of the null densities with fixed alternative densities when the mixtures tend to the null densities for sample sizes $n\rightarrow \infty .$ This local power is used to compare the tests with fixed partitions $\mathcal{P}$ of the observation space of small partition sizes $|\mathcal{P}|$ with the tests whose partitions $\mathcal{P}=\mathcal{P}_{n}$ depend on $n$ and the partition sizes $|\mathcal{P}_{n}|$ tend to infinity for $n\rightarrow \infty $. New conditions are presented under which it is asymptotically optimal to let $|\mathcal{P}|$ tend to infinity with $n$ or to keep it fixed, respectively. Similar conditions are presented under which the tests with fixed $|\mathcal{P}|$ and those with increasing $|\mathcal{P}_{n}|$ are asymptotically equivalent.
Classification : 62G10, 62G20
Keywords: Pearson goodness-of-fit test; Pearson-type goodness-of-fit tests; asymptotic local test power; asymptotic equivalence of tests; optimal number of classes
@article{KYB_2005_41_6_a0,
     author = {Morales, Domingo and Pardo, Leandro and Vajda, Igor},
     title = {On the optimal number of classes in the {Pearson} goodness-of-fit tests},
     journal = {Kybernetika},
     pages = {677--698},
     year = {2005},
     volume = {41},
     number = {6},
     mrnumber = {2193859},
     zbl = {1245.62045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a0/}
}
TY  - JOUR
AU  - Morales, Domingo
AU  - Pardo, Leandro
AU  - Vajda, Igor
TI  - On the optimal number of classes in the Pearson goodness-of-fit tests
JO  - Kybernetika
PY  - 2005
SP  - 677
EP  - 698
VL  - 41
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a0/
LA  - en
ID  - KYB_2005_41_6_a0
ER  - 
%0 Journal Article
%A Morales, Domingo
%A Pardo, Leandro
%A Vajda, Igor
%T On the optimal number of classes in the Pearson goodness-of-fit tests
%J Kybernetika
%D 2005
%P 677-698
%V 41
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a0/
%G en
%F KYB_2005_41_6_a0
Morales, Domingo; Pardo, Leandro; Vajda, Igor. On the optimal number of classes in the Pearson goodness-of-fit tests. Kybernetika, Tome 41 (2005) no. 6, pp. 677-698. http://geodesic.mathdoc.fr/item/KYB_2005_41_6_a0/

[1] Berlinet A., Vajda I.: On asymptotic sufficiency and optimality of quantizations. J. Statist. Plann. Inference 135 (2005), to appear | MR | Zbl

[2] Drost F. C., Kallenberg W. C. M., Moore D. S., Oosterhoff J.: Power approximations to multinomial tests of fit. J. Amer. Statist. Assoc. 89 (1989), 130–141 | DOI | MR | Zbl

[3] Feller W.: An Introduction to Probability and its Applications, Vol. 2. Second edition. Wiley, New York 1966

[4] Ferguson T. S.: Course in Large Sample Theory. Chapman & Hall, London 1996 | MR | Zbl

[5] Greenwood P. E., Nikulin M. S.: A Guide to Chi-Squared Testing. Wiley, New York 1996 | MR | Zbl

[6] Halmos P.: Measure Theory. Academic Press, New York 1964 | Zbl

[7] Inglot T., Janic–Wróblewska A.: Data-driven chi-square test for uniformity with unequal cells. J. Statist. Comput. Simul. 73 (2003), 545–561 | DOI | MR | Zbl

[8] Kallenberg W. C. M., Oosterhoff, J., Schriever B. F.: The number of classes in chi-squared goodness-of-fit tests. J. Amer. Statist. Assoc. 80 (1985), 959–968 | DOI | MR | Zbl

[9] Liese F., Vajda I.: Convex Statistical Distances. Teubner Verlag, Leipzig 1987 | MR | Zbl

[10] Mann H. B., Wald A.: On the choice of the number of intervals in the application of the chi-squared test. Ann. Math. Statist. 13 (1942), 306–317 | DOI | MR

[11] Mayoral A. M., Morales D., Morales, J., Vajda I.: On efficiency of estimation and testing with data quantized to fixed numbers of cells. Metrika 57 (2003), 1–27 | DOI | MR

[12] Menéndez M. L., Morales D., Pardo, L., Vajda I.: Asymptotic distributions of $f$-divergences of hypotetical and observed frequencies in sparse testing schemes. Statist. Neerlandica 8 (1998), 313–328

[13] Menéndez M. L., Morales D., Pardo, L., Vajda I.: Approximations to powers of $\phi $-disparity goodness of fit tests. Comm. Statist. – Theory Methods 8 (2001), 313–328 | MR | Zbl

[14] Morris C.: Central limit theorems for multinomial sums. Ann. Statist. 3 (1975), 165–188 | DOI | MR | Zbl

[15] Vajda I.: On the $f$-divergence and singularity of probability measures. Period. Math. Hungar. 2 (1972), 223–234 | DOI | MR | Zbl

[16] Vajda I.: On convergence of information contained in quantized observations. IEEE Trans. Inform. Theory 48 (2002), 2163–2172 | DOI | MR | Zbl

[17] Vajda I.: Asymptotic laws for stochastic disparity statistics. Tatra Mount. Math. Publ. 26 (2003), 269–280 | MR | Zbl