Keywords: homogeneous systems; homogeneous feedbacks; stabilizability; sub manifold; vector field
@article{KYB_2005_41_5_a2,
author = {Jerbi, Hamadi and Kharrat, Thouraya},
title = {Only a level set of a control {Lyapunov} function for homogeneous systems},
journal = {Kybernetika},
pages = {593--600},
year = {2005},
volume = {41},
number = {5},
mrnumber = {2192425},
zbl = {1249.93147},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_5_a2/}
}
Jerbi, Hamadi; Kharrat, Thouraya. Only a level set of a control Lyapunov function for homogeneous systems. Kybernetika, Tome 41 (2005) no. 5, pp. 593-600. http://geodesic.mathdoc.fr/item/KYB_2005_41_5_a2/
[1] Artstein Z.: Stabilization with relaxed controls. Nonlinear. Anal. 7 (1983), 1163–1173 | DOI | MR | Zbl
[2] Faubourg L., Pomet J. P.: Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems. ESAIM: Control, Optimization and Calculus of Variations 5 (2000), 293–311 | DOI | MR | Zbl
[3] Goodman R. W.: Nilpotent Lie Groups: Structure and Applications to Analysis. (Lecture Notes in Mathematics 562.) Springer–Verlag, Berlin 1976 | MR | Zbl
[4] Hermes H.: Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33 (1991), 238–264 | DOI | MR | Zbl
[5] Jerbi H.: A manifold-like characterization of asymptotic stabilizability of homogeneous systems. Systems Control Lett. 45 (2002), 173–178 | DOI | MR | Zbl
[6] Kawski M.: Homogeneous stabilizing feedback laws. Control Theory and Advanced Technology 6 (1990), 497–516 | MR
[7] Closkey R. Mac, Murray M.: Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Automat. Control 42 (1997), 614–628 | DOI | MR
[8] Closkey R. Mac, Morin P.: Time-varying homogeneous feedback: design tools for exponential stabilization of systems with drift. Internat. J. Control 71 (1998), 837–869 | DOI | MR
[9] Sontag E. D.: A “universal” construction of Artstein’s Theorem on nonlinear stabilization. Systems Control Lett. 13 (1989) | DOI | MR | Zbl
[10] Tsinias J.: Stabilization of affine in control nonlinear systems. Nonlinear Anal. 12 (1988), 1238–1296 | DOI | MR | Zbl
[11] Tsinias J.: Sufficient Lyapunov like conditions for stabilization. Math. Control Signals Systems 2 (1989), 343–357 | DOI | MR | Zbl