Only a level set of a control Lyapunov function for homogeneous systems
Kybernetika, Tome 41 (2005) no. 5, pp. 593-600 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we generalize Artstein’s theorem and we derive sufficient conditions for stabilization of single-input homogeneous systems by means of an homogeneous feedback law and we treat an application for a bilinear system.
In this paper, we generalize Artstein’s theorem and we derive sufficient conditions for stabilization of single-input homogeneous systems by means of an homogeneous feedback law and we treat an application for a bilinear system.
Classification : 93D05, 93D15
Keywords: homogeneous systems; homogeneous feedbacks; stabilizability; sub manifold; vector field
@article{KYB_2005_41_5_a2,
     author = {Jerbi, Hamadi and Kharrat, Thouraya},
     title = {Only a level set of a control {Lyapunov} function for homogeneous systems},
     journal = {Kybernetika},
     pages = {593--600},
     year = {2005},
     volume = {41},
     number = {5},
     mrnumber = {2192425},
     zbl = {1249.93147},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_5_a2/}
}
TY  - JOUR
AU  - Jerbi, Hamadi
AU  - Kharrat, Thouraya
TI  - Only a level set of a control Lyapunov function for homogeneous systems
JO  - Kybernetika
PY  - 2005
SP  - 593
EP  - 600
VL  - 41
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_5_a2/
LA  - en
ID  - KYB_2005_41_5_a2
ER  - 
%0 Journal Article
%A Jerbi, Hamadi
%A Kharrat, Thouraya
%T Only a level set of a control Lyapunov function for homogeneous systems
%J Kybernetika
%D 2005
%P 593-600
%V 41
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_5_a2/
%G en
%F KYB_2005_41_5_a2
Jerbi, Hamadi; Kharrat, Thouraya. Only a level set of a control Lyapunov function for homogeneous systems. Kybernetika, Tome 41 (2005) no. 5, pp. 593-600. http://geodesic.mathdoc.fr/item/KYB_2005_41_5_a2/

[1] Artstein Z.: Stabilization with relaxed controls. Nonlinear. Anal. 7 (1983), 1163–1173 | DOI | MR | Zbl

[2] Faubourg L., Pomet J. P.: Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems. ESAIM: Control, Optimization and Calculus of Variations 5 (2000), 293–311 | DOI | MR | Zbl

[3] Goodman R. W.: Nilpotent Lie Groups: Structure and Applications to Analysis. (Lecture Notes in Mathematics 562.) Springer–Verlag, Berlin 1976 | MR | Zbl

[4] Hermes H.: Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33 (1991), 238–264 | DOI | MR | Zbl

[5] Jerbi H.: A manifold-like characterization of asymptotic stabilizability of homogeneous systems. Systems Control Lett. 45 (2002), 173–178 | DOI | MR | Zbl

[6] Kawski M.: Homogeneous stabilizing feedback laws. Control Theory and Advanced Technology 6 (1990), 497–516 | MR

[7] Closkey R. Mac, Murray M.: Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Automat. Control 42 (1997), 614–628 | DOI | MR

[8] Closkey R. Mac, Morin P.: Time-varying homogeneous feedback: design tools for exponential stabilization of systems with drift. Internat. J. Control 71 (1998), 837–869 | DOI | MR

[9] Sontag E. D.: A “universal” construction of Artstein’s Theorem on nonlinear stabilization. Systems Control Lett. 13 (1989) | DOI | MR | Zbl

[10] Tsinias J.: Stabilization of affine in control nonlinear systems. Nonlinear Anal. 12 (1988), 1238–1296 | DOI | MR | Zbl

[11] Tsinias J.: Sufficient Lyapunov like conditions for stabilization. Math. Control Signals Systems 2 (1989), 343–357 | DOI | MR | Zbl