Geometrical characterization of observability in Interpreted Petri Nets
Kybernetika, Tome 41 (2005) no. 5, pp. 553-574 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This work is concerned with observability in Discrete Event Systems (DES) modeled by Interpreted Petri Nets (IPN). Three major contributions are presented. First, a novel geometric characterization of observability based on input-output equivalence relations on the marking sequences sets is presented. Later, to show that this characterization is well posed, it is applied to linear continuous systems, leading to classical characterizations of observability for continuous systems. Finally, this paper translates the geometric characte-rization of observability into structural properties of the IPN. Thus, polynomial algorithms can be derived to check the observability in a broad class of IPN.
This work is concerned with observability in Discrete Event Systems (DES) modeled by Interpreted Petri Nets (IPN). Three major contributions are presented. First, a novel geometric characterization of observability based on input-output equivalence relations on the marking sequences sets is presented. Later, to show that this characterization is well posed, it is applied to linear continuous systems, leading to classical characterizations of observability for continuous systems. Finally, this paper translates the geometric characte-rization of observability into structural properties of the IPN. Thus, polynomial algorithms can be derived to check the observability in a broad class of IPN.
Classification : 68Q85, 93B07, 93C65
Keywords: discrete event systems; observability; Petri nets
@article{KYB_2005_41_5_a0,
     author = {Rivera-Rangel, Israel and Ram{\'\i}rez-Trevi\~no, Antonio and Aguirre-Salas, Luis I. and Ruiz-Le\'on, Javier},
     title = {Geometrical characterization of observability in {Interpreted} {Petri} {Nets}},
     journal = {Kybernetika},
     pages = {553--574},
     year = {2005},
     volume = {41},
     number = {5},
     mrnumber = {2192423},
     zbl = {1249.93126},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_5_a0/}
}
TY  - JOUR
AU  - Rivera-Rangel, Israel
AU  - Ramírez-Treviño, Antonio
AU  - Aguirre-Salas, Luis I.
AU  - Ruiz-León, Javier
TI  - Geometrical characterization of observability in Interpreted Petri Nets
JO  - Kybernetika
PY  - 2005
SP  - 553
EP  - 574
VL  - 41
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_5_a0/
LA  - en
ID  - KYB_2005_41_5_a0
ER  - 
%0 Journal Article
%A Rivera-Rangel, Israel
%A Ramírez-Treviño, Antonio
%A Aguirre-Salas, Luis I.
%A Ruiz-León, Javier
%T Geometrical characterization of observability in Interpreted Petri Nets
%J Kybernetika
%D 2005
%P 553-574
%V 41
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_5_a0/
%G en
%F KYB_2005_41_5_a0
Rivera-Rangel, Israel; Ramírez-Treviño, Antonio; Aguirre-Salas, Luis I.; Ruiz-León, Javier. Geometrical characterization of observability in Interpreted Petri Nets. Kybernetika, Tome 41 (2005) no. 5, pp. 553-574. http://geodesic.mathdoc.fr/item/KYB_2005_41_5_a0/

[1] Aguirre-Salas L., Begovich, O., Ramírez-Treviño A.: Observability in interpreted Petri nets using sequence invariants. In: Proc. 41th IEEE Conference on Decision and Control, Hawai 2002, pp. 3602–3607

[2] Campos-Rodríguez R., Ramírez-Treviño, A., López-Mellado E.: Regulation control of partially observed discrete event systems. In: Proc. IEEE–SMC, The Hague 2004, pp. 1837–1842

[3] Chen C. T.: Linear System Theory and Design. Harcourt Brace Jovanovich Inc., New York 1970

[4] Cieslak R., Desclaux C., Fawaz, A., Varaiya P.: Supervisory control of discrete event processes with partial observation. IEEE Trans. Automat. Control 33 (1988), 249–260 | DOI

[5] Desel J., Esparza J.: Free Choice Petri Nets. Cambridge University Press, Cambridge 1995 | MR | Zbl

[6] DiCesare F., Harhalakis G., Proth J. M., Silva, M., Vernadat F. B.: Practice of Petri Nets in Manufacturing. Chapman & Hall, London 1993

[7] Giua A.: Petri net state estimators based on event observation. In: Proc. 36th IEEE Conference on Decision and Control, San Diego 1997, pp. 4086–4091

[8] Giua A., Seatzu C.: Observability properties of Petri nets. In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 2676–2681

[9] Hopcroft J. E., Ullman J. D.: Introduction to Automata Theory, Languages and Computation. Addison–Wesley, New York 1979 | MR | Zbl

[10] Ichikawa A., Hiraishi K.: Analysis and Control of Discrete Event Systems Represented by Petri Nets. (Lecture Notes in Control and Inform. Sciences 103.) Springer, Berlin 1989, pp. 115–134 | DOI | MR

[11] Kumar R., Grag V. K., Marcus S. I.: On controllability and normality of discrete event dynamic systems. Systems Control Lett. 17 (1991), 157–168 | DOI | MR

[12] Kumar R., Grag V. K., Marcus S. I.: On supervisory control of sequential behaviors. IEEE Trans. Automat. Control 37 (1992), 1978–1985 | DOI | MR

[13] Kumar R., Shayman M. A.: Formulae relating controllability, observability and co-observability. Automatica 2 (1998), 211–215 | DOI | MR | Zbl

[14] Li Y., Wonham W. M.: Controllability and observability in the state-feedback control of discrete event systems. In: Proc. 27th IEEE Conference on Decision and Control, Austin 1988, pp. 203–207

[15] Lin F., Wonham W. M.: Decentralized control and coordination of discrete-event systems with partial observation. IEEE Trans. Automat. Control 35 (1990), 1330–1337 | DOI | MR | Zbl

[16] Meda M. E., Ramírez-Treviño, A., Malo A.: Identification in discrete event systems. IEEE Internat. Conference SMC, San Diego 1998, pp. 740–745

[17] Murata T.: Petri nets: properties, analysis and applications. Proc. IEEE 77 (1989), 541–580

[18] Özveren C. M., Willsky A. S.: Observability of discrete event dynamic systems. IEEE Trans. Automat. Control 35 (1990), 797–806 | DOI | MR | Zbl

[19] Perko L.: Differential Equations and Dynamic Systems. (Texts in Applied Mathematics.) Springer, New York 1996 | DOI

[20] Ramadge P. J.: Observability of discrete event systems. In: Proc. 25th IEEE Conference on Decision and Control, Athens 1986, pp. 1108–1112

[21] Ramírez-Treviño A., Rivera-Rangel, I., López-Mellado E.: Observability of discrete event systems modeled by interpreted Petri nets. IEEE Trans. Robotics and Automation 19 (2003), 557–565 | DOI

[22] Rivera-Rangel I., Aguirre-Salas L., Ramírez-Treviño, A., López-Mellado E.: Observer design for discrete event systems modeled by interpreted Petri nets. In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000, pp. 2260–2265

[23] Ushio T.: On the existence of finite-state supervisors under partial observations. IEEE Trans. Automat. Control 42 (1997), 1577–1581 | DOI | MR | Zbl

[24] Wonham W. M.: Linear Multivariable Control. A Geometric Approach. Springer, New York 1985 | MR | Zbl