Comparing the distributions of sums of independent random vectors
Kybernetika, Tome 41 (2005) no. 4, pp. 519-529 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(X_n, n\ge 1), (\tilde{X}_n, n\ge 1)$ be two sequences of i.i.d. random vectors with values in ${\mathbb{R}}^k$ and $S_n=X_1+\cdots +X_n$, $\tilde{S}_n=\tilde{X}_1+\cdots +\tilde{X}_n$, $n\ge 1$. Assuming that $EX_1=E\tilde{X}_1$, $E|X_1|^2\infty $, $E|\tilde{X}_1|^{k+2}\infty $ and the existence of a density of $\tilde{X}_1$ satisfying the certain conditions we prove the following inequalities: \[v(S_n,\tilde{S}_n)\le c\;\max \big \lbrace v(X_1,\tilde{X}_1), \zeta _2(X_1,\tilde{X}_1)\big \rbrace , \quad n=1,2,\dots ,\] where $v$ and $\zeta _2$ are the total variation and Zolotarev’s metrics, respectively.
Let $(X_n, n\ge 1), (\tilde{X}_n, n\ge 1)$ be two sequences of i.i.d. random vectors with values in ${\mathbb{R}}^k$ and $S_n=X_1+\cdots +X_n$, $\tilde{S}_n=\tilde{X}_1+\cdots +\tilde{X}_n$, $n\ge 1$. Assuming that $EX_1=E\tilde{X}_1$, $E|X_1|^2\infty $, $E|\tilde{X}_1|^{k+2}\infty $ and the existence of a density of $\tilde{X}_1$ satisfying the certain conditions we prove the following inequalities: \[v(S_n,\tilde{S}_n)\le c\;\max \big \lbrace v(X_1,\tilde{X}_1), \zeta _2(X_1,\tilde{X}_1)\big \rbrace , \quad n=1,2,\dots ,\] where $v$ and $\zeta _2$ are the total variation and Zolotarev’s metrics, respectively.
Classification : 60F99, 60G50
Keywords: sum of random vectors; the total variation distance; bound of closeness; Zolotarev’s metric; characteristic function
@article{KYB_2005_41_4_a5,
     author = {Gordienko, Evgueni},
     title = {Comparing the distributions of sums of independent random vectors},
     journal = {Kybernetika},
     pages = {519--529},
     year = {2005},
     volume = {41},
     number = {4},
     mrnumber = {2180360},
     zbl = {1249.60086},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a5/}
}
TY  - JOUR
AU  - Gordienko, Evgueni
TI  - Comparing the distributions of sums of independent random vectors
JO  - Kybernetika
PY  - 2005
SP  - 519
EP  - 529
VL  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a5/
LA  - en
ID  - KYB_2005_41_4_a5
ER  - 
%0 Journal Article
%A Gordienko, Evgueni
%T Comparing the distributions of sums of independent random vectors
%J Kybernetika
%D 2005
%P 519-529
%V 41
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a5/
%G en
%F KYB_2005_41_4_a5
Gordienko, Evgueni. Comparing the distributions of sums of independent random vectors. Kybernetika, Tome 41 (2005) no. 4, pp. 519-529. http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a5/

[1] Araujo A., Giné E.: The Central Limit Theorem for Real and Banach Valued Random Variables. Wiley, New York 1980 | MR | Zbl

[2] Asmussen S.: Applied Probability and Queues. Wiley, Chichester 1987 | MR | Zbl

[3] Bhattacharya R. N., Rao R. Ranga: Normal Approximation and Asymptotic Expansions. Wiley, New York 1976 | MR

[4] Dudley R. M.: Uniform Central Limit Theorems. Cambridge University Press, Cambridge 1999 | MR | Zbl

[5] Gordienko E. I.: Estimates of stability of geometric convolutions. Appl. Math. Lett. 12 (1999), 103–106 | DOI | MR | Zbl

[6] Gordienko E. I., Chávez J. Ruiz de: New estimates of continuity in $M|GI|1|\infty $ queues. Queueing Systems Theory Appl. 29 (1998), 175–188 | MR

[7] Grandell J.: Aspects of Risk Theory. Springer–Verlag, Heidelberg 1991 | MR | Zbl

[8] Kalashnikov V.: Geometric Sums: Bounds for Rare Events with Applications. Kluwer Academic Publishers, Dordrecht 1997 | MR | Zbl

[9] Kalashnikov V., Konstantinidis D.: The ruin probability. Fund. Appl. Math. 2 (1996), 1055–1100 (in Russian) | MR

[10] Prokhorov A. V., Ushakov N. G.: On the problem of reconstructing a summands distribution by the distribution of their sum. Theory Probab. Appl. 46 (2002), 420–430 | DOI | MR | Zbl

[11] Senatov V. V.: Uniform estimates of the rate of convergence in the multi-dimensional central limit theorem. Theory Probab. Appl. 25 (1980), 745–759

[12] Senatov V. V.: Qualitative effects in estimates for the rate of convergence in the central limit theorem in multidimensional spaces. Proc. Steklov Inst. Math. 215 (1996), 4, 1–237 | MR

[13] Zhukov, Yu. V.: On the accuracy of normal approximation for the densities of sums of independent identically distributed random variables. Theory Probab. Appl. 44 (2000), 785–793 | MR | Zbl

[14] Zolotarev V.: Ideal metrics in the problems of probability theory. Austral. J. Statist. 21 (1979), 193–208 | DOI | MR | Zbl