Multiplication, distributivity and fuzzy-integral. II
Kybernetika, Tome 41 (2005) no. 4, pp. 469-496 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Based on results of generalized additions and generalized multiplications, proven in Part I, we first show a structure theorem on two generalized additions which do not coincide. Then we prove structure and representation theorems for generalized multiplications which are connected by a strong and weak distributivity law, respectively. Finally – as a last preparation for the introduction of a framework for a fuzzy integral – we introduce generalized differences with respect to t-conorms (which are not necessarily Archimedean) and prove their essential properties.
Based on results of generalized additions and generalized multiplications, proven in Part I, we first show a structure theorem on two generalized additions which do not coincide. Then we prove structure and representation theorems for generalized multiplications which are connected by a strong and weak distributivity law, respectively. Finally – as a last preparation for the introduction of a framework for a fuzzy integral – we introduce generalized differences with respect to t-conorms (which are not necessarily Archimedean) and prove their essential properties.
Classification : 20M30, 28A12, 28A25, 28E10
Keywords: fuzzy measures; distributivity law; restricted domain; pseudo- addition; pseudo-multiplication; Choquet integral; Sugeno integral
@article{KYB_2005_41_4_a3,
     author = {Sander, Wolfgang and Siedekum, Jens},
     title = {Multiplication, distributivity and fuzzy-integral. {II}},
     journal = {Kybernetika},
     pages = {469--496},
     year = {2005},
     volume = {41},
     number = {4},
     mrnumber = {2180358},
     zbl = {1249.28029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a3/}
}
TY  - JOUR
AU  - Sander, Wolfgang
AU  - Siedekum, Jens
TI  - Multiplication, distributivity and fuzzy-integral. II
JO  - Kybernetika
PY  - 2005
SP  - 469
EP  - 496
VL  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a3/
LA  - en
ID  - KYB_2005_41_4_a3
ER  - 
%0 Journal Article
%A Sander, Wolfgang
%A Siedekum, Jens
%T Multiplication, distributivity and fuzzy-integral. II
%J Kybernetika
%D 2005
%P 469-496
%V 41
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a3/
%G en
%F KYB_2005_41_4_a3
Sander, Wolfgang; Siedekum, Jens. Multiplication, distributivity and fuzzy-integral. II. Kybernetika, Tome 41 (2005) no. 4, pp. 469-496. http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a3/

[1] Aczél J.: Lectures on Functional Equations and Their Applications. Academic Press, New York – London 1966 | MR

[2] Benvenuti P., Mesiar, R., Vivona D.: Monotone set-functions-based integrals. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 1329–1379 | MR | Zbl

[3] Benvenuti P., Vivona, D., Divari M.: The Cauchy equation on I-semigroups. Aequationes Math. 63 (2002), 220–230 | DOI | MR

[4] Bertoluzza C., Cariolaro D.: On the measure of a fuzzy set based on continuous t-conorms. Fuzzy Sets and Systems 88 (1997), 355–362 | DOI | MR | Zbl

[5] deCampos L. M., Bolaños M. J.: Characterization and comparison of Sugeno and Choquet integral. Fuzzy Sets and Systems 52 (1992), 61–67 | DOI | MR

[6] Denneberg D.: Non-additive Measure and Integral. Kluwer, Dordrecht 1994 | MR | Zbl

[7] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994 | Zbl

[8] Grabisch M., Murofushi, T., (eds.) M. Sugeno: Fuzzy Measures and Integrals. Theory and Applications. Physica–Verlag, Heidelberg 2000 | MR | Zbl

[9] Grabisch M., Nguyen H. T., Walker E. A.: Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference. Kluwer Academic Publishers, Dordrecht 1995 | MR | Zbl

[10] Kruse R. L., Deeley J. J.: Joint continuity of monotonic functions. Amer. Math. Soc. 76 (1969), 74–76 | DOI

[11] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. (Trends in Logic, Volume 8.) Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl

[12] Ling C. H.: Representations of associative functions. Publ. Math. Debrecen 12 (1965), 189–212 | MR

[13] Mesiar R.: Choquet-like integrals. J. Math. Anal. Appl. 194 (1995), 477–488 | DOI | MR

[14] Mostert P. S., Shields A. L.: On the structure of semigroups on a compact manifold with boundary. Ann. of Math. 65 (1957), 117–143 | DOI | MR

[15] Murofushi T., Sugeno M.: Fuzzy t-conorm integral with respect to fuzzy measures: Generalization of Sugeno integral and Choquet integral. Fuzzy Sets and Systems 42 (1991), 57–71 | MR | Zbl

[16] Pap E.: Null-Additive Set Functions. Kluwer Academic Publishers. Dordrecht 1995 | MR | Zbl

[17] Sander W.: Associative aggregation operators. In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg – New York 2002, pp. 124–158 | MR | Zbl

[18] Shilkret N.: Maxitive measures and integration. Indag. Math. 33 (1971), 109–116 | DOI | MR

[19] Siedekum J.: Multiplikation und t-Conorm Integral. Ph.D. Thesis. Braunschweig 2002 | Zbl

[20] Sugeno M., Murofushi T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122 (1987), 197–222 | DOI | MR | Zbl

[21] Wang Z., Klir G. J.: Fuzzy Measure Theory. Plenum Press, New York 1992 | MR | Zbl

[22] Weber S.: $\perp $-decomposable measures and integrals for Archimedean t-conorms $\perp $. J. Math. Anal. Appl. 101 (1984), 114–138 | DOI | MR | Zbl