Keywords: state; observable; tribe of fuzzy sets; conditional independence
@article{KYB_2005_41_4_a2,
author = {Kroupa, Tom\'a\v{s}},
title = {Many-dimensional observables on {{\L}ukasiewicz} tribe: constructions, conditioning and conditional independence},
journal = {Kybernetika},
pages = {451--468},
year = {2005},
volume = {41},
number = {4},
mrnumber = {2180357},
zbl = {1249.60004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a2/}
}
Kroupa, Tomáš. Many-dimensional observables on Łukasiewicz tribe: constructions, conditioning and conditional independence. Kybernetika, Tome 41 (2005) no. 4, pp. 451-468. http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a2/
[1] Butnariu D., Klement E. P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions. Kluwer Academic Publishers, Dordrecht 1993 | MR | Zbl
[2] Butnariu D., Klement E. P.: Triangular norm-based measures. In: Handbook of Measure Theory (E. Pap, ed.), North Holland, Amsterdam 2002, pp. 947–1010 | MR | Zbl
[3] Kroupa T.: Conditional independence in probability theory on MV-algebras. Soft Computing 8 (2004), 534–538 | DOI | Zbl
[4] Kuratowski K., Mostowski A.: Set Theory. North Holland, Amsterdam 1976 | MR | Zbl
[5] Lauritzen S.: Graphical Models. Oxford Statistical Science Series, Oxford University Press, Oxford 1996 | MR | Zbl
[6] Loève M.: Probability Theory, Foundations, Random Processes. D. Van Nostrand, Toronto – New York – London 1955
[7] D’Ottaviano, R. Cignoli, I., Mundici D.: Algebraic Foundations of Many-valued Reasoning. (Trends in Logic, Studia Logica Library, Vol. 7.) Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl
[8] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics. (Fundamental Theories of Physics, Volume 44.) Kluwer Academic Publishers, Dordrecht 1991 | MR
[9] Pulmannová S.: A note on observables on MV-algebras. Soft Computing 4 (2000), 45–48 | DOI | Zbl
[10] Riečan B., Mundici D.: Probability on MV-algebras. In: Handbook of Measure Theory (E. Pap, ed.), North Holland, Amsterdam 2002, pp. 869–909 | MR | Zbl
[11] Studený M.: Probabilistic Conditional Independence Structures. Springer, London 2005
[12] Štěpán J.: Probability Theory. Mathematical Foundations (in Czech). Academia, Praha 1987
[13] Varadarajan V.: Geometry of Quantum Theory, Volume 1. Van Nostrand Reinhol, Princeton, N.J. 1968 | MR
[14] Vejnarová J.: Conditional independence relations in possibility theory. Internat. J. Uncertainty Fuzziness Knowledge-Based Systems 8 (2000), 253–269 | DOI | MR | Zbl
[15] Vrábelová M.: On the conditional probability on product MV-algebras. Soft Computing 4 (2000), 58–61 | DOI | Zbl
[16] Zadeh L.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23 (1968), 421–427 | DOI | MR | Zbl