On reverses of some binary operators
Kybernetika, Tome 41 (2005) no. 4, pp. 435-450 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The notion of reverse of any binary operation on the unit interval is introduced. The properties of reverses of some binary operations are studied and some applications of reverses are indicated.
The notion of reverse of any binary operation on the unit interval is introduced. The properties of reverses of some binary operations are studied and some applications of reverses are indicated.
Classification : 03E72, 08A72, 39B05
Keywords: reverse of binary operations; fuzzy preference structures
@article{KYB_2005_41_4_a1,
     author = {\v{S}abo, Michal and Stre\v{z}o, Peter},
     title = {On reverses of some binary operators},
     journal = {Kybernetika},
     pages = {435--450},
     year = {2005},
     volume = {41},
     number = {4},
     mrnumber = {2180356},
     zbl = {1249.08010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a1/}
}
TY  - JOUR
AU  - Šabo, Michal
AU  - Strežo, Peter
TI  - On reverses of some binary operators
JO  - Kybernetika
PY  - 2005
SP  - 435
EP  - 450
VL  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a1/
LA  - en
ID  - KYB_2005_41_4_a1
ER  - 
%0 Journal Article
%A Šabo, Michal
%A Strežo, Peter
%T On reverses of some binary operators
%J Kybernetika
%D 2005
%P 435-450
%V 41
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a1/
%G en
%F KYB_2005_41_4_a1
Šabo, Michal; Strežo, Peter. On reverses of some binary operators. Kybernetika, Tome 41 (2005) no. 4, pp. 435-450. http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a1/

[1] Baets B. De, Fodor J.: Twenty years of fuzzy preference structures (1978 – 1997). Belg. J. Oper. Res. Statist. Comput. Sci. 37 (1997), 61–81 | MR | Zbl

[2] Baets B. De, Fodor J.: Generator triplets of additive preference structures. Academia Press, Gent 2003, pp. 15–25

[3] Baets B. De, Mayer H. De: The Frank family in fuzzy similarity measurement. In: Proc. Eusflat, Leicester 2001, pp. 15–23

[4] Fodor J., Roubens M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994

[5] Fodor J., Jenei S.: On reversible triangular t-norms. Fuzzy Sets and Systems 104 (1999), 1, 43–51 | MR

[6] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$. Aequationes Math. 19 (1979), 194–226 | DOI | MR | Zbl

[7] Jenei S.: Fibred triangular norms. Fuzzy Sets and Systems 103 (1999), 68–82 | MR | Zbl

[8] Kimberling C.: On a class of associative function. Publ. Math. Debrecen 20 (1973), 21–39 | MR

[9] Klement E. P., Mesiar, R., Pap E.: On some geometric tranformations of t-norms. Mathware & Soft Computing 5 (1998), 57–67 | MR

[10] Klement E. P., Mesiar, R., Pap E.: Invariant copulas. Kybernetika 38 (2002), 275–285 | MR

[11] Klement E. P., Mesiar, R., Pap E.: Measure-based aggregation operators. Fuzzy Sets and Systems 142 (2004), 3–14 | DOI | MR | Zbl

[12] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl

[13] Kolesárová A., Mordelová J.: 1-Lipschitz and kernel aggregation operators. In: Proc. Summmer School on Aggregation Operators and their Applications, Oviedo 2001, pp. 71–75

[14] Lazaro J., Rückschlossová, T., Calvo T.: Shift invariant binary aggregation operators. Fuzzy Sets and Systems 142 (2004), 51–62 | DOI | MR | Zbl

[15] Mesiarová A.: Continuous triangular subnorms. Fuzzy Sets and Systems 142 (2004), 75–83 | MR | Zbl

[16] Moyniham R.: On $\tau _{T}$ semigroups of probability distributions II. Aequationes Math. 17 (1978), 19–40

[17] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer, New York 1999 | DOI | MR | Zbl

[18] Šabo M.: On t-reverse of t-norms. Tatra Mt. Math. Publ. 12 (1997), 35–40 | MR | Zbl

[19] Šabo M.: Fuzzy preference structures and t-reversible t-norm. Busefal 76 (1998), 29–33

[20] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, New York 1963 | MR | Zbl

[21] Walle B. Van de, Baets, B. De, Kerre E. E.: A comparative study of completeness conditions in fuzzy preference structures. In: Proc. IFSA’97, Prague, Vol. III, pp. 74–79