Keywords: reverse of binary operations; fuzzy preference structures
@article{KYB_2005_41_4_a1,
author = {\v{S}abo, Michal and Stre\v{z}o, Peter},
title = {On reverses of some binary operators},
journal = {Kybernetika},
pages = {435--450},
year = {2005},
volume = {41},
number = {4},
mrnumber = {2180356},
zbl = {1249.08010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a1/}
}
Šabo, Michal; Strežo, Peter. On reverses of some binary operators. Kybernetika, Tome 41 (2005) no. 4, pp. 435-450. http://geodesic.mathdoc.fr/item/KYB_2005_41_4_a1/
[1] Baets B. De, Fodor J.: Twenty years of fuzzy preference structures (1978 – 1997). Belg. J. Oper. Res. Statist. Comput. Sci. 37 (1997), 61–81 | MR | Zbl
[2] Baets B. De, Fodor J.: Generator triplets of additive preference structures. Academia Press, Gent 2003, pp. 15–25
[3] Baets B. De, Mayer H. De: The Frank family in fuzzy similarity measurement. In: Proc. Eusflat, Leicester 2001, pp. 15–23
[4] Fodor J., Roubens M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994
[5] Fodor J., Jenei S.: On reversible triangular t-norms. Fuzzy Sets and Systems 104 (1999), 1, 43–51 | MR
[6] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$. Aequationes Math. 19 (1979), 194–226 | DOI | MR | Zbl
[7] Jenei S.: Fibred triangular norms. Fuzzy Sets and Systems 103 (1999), 68–82 | MR | Zbl
[8] Kimberling C.: On a class of associative function. Publ. Math. Debrecen 20 (1973), 21–39 | MR
[9] Klement E. P., Mesiar, R., Pap E.: On some geometric tranformations of t-norms. Mathware & Soft Computing 5 (1998), 57–67 | MR
[10] Klement E. P., Mesiar, R., Pap E.: Invariant copulas. Kybernetika 38 (2002), 275–285 | MR
[11] Klement E. P., Mesiar, R., Pap E.: Measure-based aggregation operators. Fuzzy Sets and Systems 142 (2004), 3–14 | DOI | MR | Zbl
[12] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl
[13] Kolesárová A., Mordelová J.: 1-Lipschitz and kernel aggregation operators. In: Proc. Summmer School on Aggregation Operators and their Applications, Oviedo 2001, pp. 71–75
[14] Lazaro J., Rückschlossová, T., Calvo T.: Shift invariant binary aggregation operators. Fuzzy Sets and Systems 142 (2004), 51–62 | DOI | MR | Zbl
[15] Mesiarová A.: Continuous triangular subnorms. Fuzzy Sets and Systems 142 (2004), 75–83 | MR | Zbl
[16] Moyniham R.: On $\tau _{T}$ semigroups of probability distributions II. Aequationes Math. 17 (1978), 19–40
[17] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer, New York 1999 | DOI | MR | Zbl
[18] Šabo M.: On t-reverse of t-norms. Tatra Mt. Math. Publ. 12 (1997), 35–40 | MR | Zbl
[19] Šabo M.: Fuzzy preference structures and t-reversible t-norm. Busefal 76 (1998), 29–33
[20] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, New York 1963 | MR | Zbl
[21] Walle B. Van de, Baets, B. De, Kerre E. E.: A comparative study of completeness conditions in fuzzy preference structures. In: Proc. IFSA’97, Prague, Vol. III, pp. 74–79