Multiplication, distributivity and fuzzy-integral. I
Kybernetika, Tome 41 (2005) no. 3, pp. 397-422 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The main purpose is the introduction of an integral which covers most of the recent integrals which use fuzzy measures instead of measures. Before we give our framework for a fuzzy integral we motivate and present in a first part structure- and representation theorems for generalized additions and generalized multiplications which are connected by a strong and a weak distributivity law, respectively.
The main purpose is the introduction of an integral which covers most of the recent integrals which use fuzzy measures instead of measures. Before we give our framework for a fuzzy integral we motivate and present in a first part structure- and representation theorems for generalized additions and generalized multiplications which are connected by a strong and a weak distributivity law, respectively.
Classification : 20M30, 26E50, 28A12, 28A25, 28E10
Keywords: fuzzy measures; distributivity law; restricted domain; pseudo- addition; pseudo-multiplication; Choquet integral; Sugeno integral
@article{KYB_2005_41_3_a9,
     author = {Sander, Wolfgang and Siedekum, Jens},
     title = {Multiplication, distributivity and fuzzy-integral. {I}},
     journal = {Kybernetika},
     pages = {397--422},
     year = {2005},
     volume = {41},
     number = {3},
     mrnumber = {2181427},
     zbl = {1249.28028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a9/}
}
TY  - JOUR
AU  - Sander, Wolfgang
AU  - Siedekum, Jens
TI  - Multiplication, distributivity and fuzzy-integral. I
JO  - Kybernetika
PY  - 2005
SP  - 397
EP  - 422
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a9/
LA  - en
ID  - KYB_2005_41_3_a9
ER  - 
%0 Journal Article
%A Sander, Wolfgang
%A Siedekum, Jens
%T Multiplication, distributivity and fuzzy-integral. I
%J Kybernetika
%D 2005
%P 397-422
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a9/
%G en
%F KYB_2005_41_3_a9
Sander, Wolfgang; Siedekum, Jens. Multiplication, distributivity and fuzzy-integral. I. Kybernetika, Tome 41 (2005) no. 3, pp. 397-422. http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a9/

[1] Aczél J.: Lectures on Functional Equations and Their Applications. Academic Press, New York – London 1966 | MR

[2] Benvenuti P., Mesiar, R., Vivona D.: Monotone set-functions-based integrals. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 1329–1379 | MR | Zbl

[3] Benvenuti P., Vivona, D., Divari M.: The Cauchy equation on I-semigroups. Aequationes Math. 63 (2002), 220–230 | DOI | MR

[4] Bertoluzza C., Cariolaro D.: On the measure of a fuzzy set based on continuous t-conorms. Fuzzy Sets and Systems 88 (1997), 355–362 | DOI | MR | Zbl

[5] deCampos L. M., Bolaños M. J.: Characterization and comparison of Sugeno and Choquet integral. Fuzzy Sets and Systems 52 (1992), 61–67 | DOI | MR

[6] Denneberg D.: Non-additive Measure and Integral. Kluwer Academic Publishers, Dordrecht 1994 | MR | Zbl

[7] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994 | Zbl

[8] Grabisch M., Murofushi, T., (eds.) M. Sugeno: Fuzzy Measures and Integrals. Theory and Applications. Physica–Verlag, Heidelberg 2000 | MR | Zbl

[9] Grabisch M., Nguyen H. T., Walker E. A.: Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference. Kluwer Academic Publishers, Dordrecht 1995 | MR | Zbl

[10] Kruse R. L., Deeley J. J.: Joint continuity of monotonic functions. Amer. Math. Soc. 76 (1969), 74–76 | DOI

[11] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. (Trends in Logic, Volume 8.) Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl

[12] Ling C. H.: Representations of associative functions. Publ. Math. Debrecen 12 (1965), 189–212 | MR

[13] Mesiar R.: Choquet-like Integrals. J. Math. Anal. Appl. 194 (1995), 477–488 | DOI | MR

[14] Mostert P. S., Shields A. L.: On the structure of semigroups on a compact manifold with boundary. Ann. of Math. 65 (1957), 117–143 | DOI | MR

[15] Murofushi T., Sugeno M.: Fuzzy t-conorm integral with respect to fuzzy measures: Generalization of Sugeno integral and Choquet integral. Fuzzy Sets and Systems 42 (1991), 57–71 | MR | Zbl

[16] Pap E.: Null-Additive Set Functions. Kluwer Academic Publishers. Dordrecht 1995 | MR | Zbl

[17] Sander W.: Associative aggregation operators. In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg – New York 2002, pp. 124–158 | MR | Zbl

[18] Shilkret N.: Maxitive measures and integration. Indag. Math. 33 (1971), 109–116 | DOI | MR

[19] Siedekum J.: Multiplikation und t-Conorm Integral. Ph.D. Thesis. Braunschweig 2002 | Zbl

[20] Sugeno M., Murofushi T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122 (1987), 197–222 | DOI | MR | Zbl

[21] Wang Z., Klir G. J.: Fuzzy Measure Theory. Plenum Press, New York – London 1992 | MR | Zbl

[22] Weber S.: $\perp $-decomposable measures and integrals for Archimedean t-conorms $\perp $. J. Math. Anal. Appl. 101 (1984), 114–138 | DOI | MR | Zbl