Fuzzy distances
Kybernetika, Tome 41 (2005) no. 3, pp. 375-388 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper, three different ways of constructing distances between vaguely described objects are shown: a generalization of the classic distance between subsets of a metric space, distance between membership functions of fuzzy sets and a fuzzy metric introduced by generalizing a metric space to fuzzy-metric one. Fuzzy metric spaces defined by Zadeh’s extension principle, particularly to $\mathbb{R}^{n}$ are dealt with in detail.
In the paper, three different ways of constructing distances between vaguely described objects are shown: a generalization of the classic distance between subsets of a metric space, distance between membership functions of fuzzy sets and a fuzzy metric introduced by generalizing a metric space to fuzzy-metric one. Fuzzy metric spaces defined by Zadeh’s extension principle, particularly to $\mathbb{R}^{n}$ are dealt with in detail.
Classification : 03B52, 03E72, 11J99, 47H10, 54A40, 54E35, 54H25
Keywords: fuzzy metric; fuzzy distance; fuzzy metric space; fuzzy contraction
@article{KYB_2005_41_3_a7,
     author = {Bedn\'a\v{r}, Josef},
     title = {Fuzzy distances},
     journal = {Kybernetika},
     pages = {375--388},
     year = {2005},
     volume = {41},
     number = {3},
     mrnumber = {2181425},
     zbl = {1249.54013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a7/}
}
TY  - JOUR
AU  - Bednář, Josef
TI  - Fuzzy distances
JO  - Kybernetika
PY  - 2005
SP  - 375
EP  - 388
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a7/
LA  - en
ID  - KYB_2005_41_3_a7
ER  - 
%0 Journal Article
%A Bednář, Josef
%T Fuzzy distances
%J Kybernetika
%D 2005
%P 375-388
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a7/
%G en
%F KYB_2005_41_3_a7
Bednář, Josef. Fuzzy distances. Kybernetika, Tome 41 (2005) no. 3, pp. 375-388. http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a7/

[1] Bednář J.: The fuzzy rational database system FSearch 2. 0. In: Proc. 6th Internat. Conference on Soft Computing MENDEL, Brno 2000, pp. 232–237

[2] Bednář J.: Properties of fuzzy metrics on $R^{n}$. In: Proc. East West Fuzzy Colloquium 2002 and 10th Zittau Fuzzy Colloquium, Zittau 2002, pp. 2–6

[3] Gerla G., Volpe R.: The definition of distance and diameter in fuzzy set theory. Stutia Univ. Babes–Bolyai Math. 31 (1986), 21–26 | MR | Zbl

[4] Kaleva O., Seikkala S.: On fuzzy metric spaces. Fuzzy Sets and Systems 12 (1984), 215–229 | DOI | MR | Zbl

[5] Klir G., Yuan B.: Fuzzy Set and Fuzzy Logic: Theory and Applications. Prentice Hall, Englewood Cliffs, NJ 1995 | MR

[6] Mareš M.: Computation over Fuzzy Quantities. CRC Press, Boca Raton 1994 | MR | Zbl

[7] Osman A.: Fuzzy metric spaces and fixed fuzzy set theorem. Bull. Malaysian Math. Soc. 6 (1983), 1, 1–4 | MR

[8] Rudin W.: Real and Complex Analysis. McGraw–Hill, New York 1984 | Zbl

[9] Szmidt E., Kacprzyk J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114 (2000), 505–518 | DOI | MR | Zbl