Keywords: MV-algebras; Loomis–Sikorski theorem; tribe; spectral decomposition; lattice effect algebras; compatibility; block
@article{KYB_2005_41_3_a6,
author = {Pulmannov\'a, Sylvia},
title = {A spectral theorem for $\sigma$ {MV-algebras}},
journal = {Kybernetika},
pages = {361--374},
year = {2005},
volume = {41},
number = {3},
mrnumber = {2181424},
zbl = {1249.03119},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a6/}
}
Pulmannová, Sylvia. A spectral theorem for $\sigma$ MV-algebras. Kybernetika, Tome 41 (2005) no. 3, pp. 361-374. http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a6/
[1] Belluce L. P.: Semisimple algebras of infinite valued logic and Bold fuzzy set theory. Canad. J. Math. 38 (1986), 1356–1379 | DOI | MR | Zbl
[2] Busch P., Lahti P. J., Mittelstaedt P.: The Quantum Theory of Measurement. Springer–Verlag, Berlin 1991 | MR | Zbl
[3] Butnariu D., Klement E.: Triangular-norm-based measures and their Markov kernel representation. J. Math. Anal. Appl. 162 (1991), 111–143 | DOI | MR | Zbl
[4] Barbieri G., Weber H.: Measures on clans and on MV-algebras. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, Chapt. 22, pp. 911–945 | MR | Zbl
[5] Cattaneo G., Giuntini, R., Pulmannová S.: Pre-BZ and degenerate BZ posets: Applications to fuzzy sets and unsharp quantum theories. Found. Phys. 30 (2000), 1765–1799 | DOI | MR
[6] Chang C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490 | DOI | MR | Zbl
[7] Chang C. C.: A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80 | MR | Zbl
[8] Chovanec F., Kôpka F.: D-lattices. Internat. J. Theor. Phys. 34 (1995), 1297–1302 | DOI | MR | Zbl
[9] Cignoli R., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundation of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht 2000 | MR
[10] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy on effect algebras with the Riesz decomposition property I, II. Kybernetika 41 (2005), 143–160, 161–176
[11] Chiara M. Dalla, Giuntini, R., Greechie R.: Reasoning in Quantum Theory. Kluwer Academic Publishers, Dordrecht 2004 | MR
[12] Dvurečenskij A.: Loomis–Sikorski theorem for $\sigma $-complete MV-algebras and $\ell $-groups. J. Austral. Math. Soc. Ser. A 68 (2000), 261–277 | DOI | MR | Zbl
[13] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 2000 | MR
[14] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logic. Found. Phys. 24 (1994), 1325–1346 | DOI | MR
[15] Halmos P. R.: Measure Theory. Van Nostrand, Princeton, New Jersey 1962 | MR | Zbl
[16] Kôpka F., Chovanec F.: D-posets. Math. Slovaca 44 (1994), 21–34 | MR
[17] Mundici D.: Interpretation of AF C*-algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63 | DOI | MR
[18] Mundici D.: Tensor products and the Loomis–Sikorski theorem for MV-algebras. Adv. Appl. Math. 22 (1999), 227–248 | DOI | MR | Zbl
[19] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht and VEDA, Bratislava 1991 | MR
[20] Pulmannová S.: Spectral resolutions in Dedekind $\sigma $-complete $\ell $-groups. J. Math. Anal. Appl. (to appear) | MR | Zbl
[21] Riečan B., Mundici D.: Probability on MV-algebras. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, Chapt. 21, pp. 869–909 | MR | Zbl
[22] Riečan B., Neubrunn T.: Integral, Measure and Ordering. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1997 | MR | Zbl
[23] Varadarajan V. S.: Geometry of Quantum Theory. Springer–Verlag, New York 1985 | MR | Zbl