A spectral theorem for $\sigma$ MV-algebras
Kybernetika, Tome 41 (2005) no. 3, pp. 361-374 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic. MV stands for “multi-valued" and MV algebras have already occupied an important place in the realm of nonstandard (mathematical) logic applied in several fields including cybernetics. In the present paper, using the Loomis–Sikorski theorem for $\sigma $-MV-algebras, we prove that, with every element $a$ in a $\sigma $-MV algebra $M$, a spectral measure (i. e. an observable) $\Lambda _a: {\mathcal{B}}([0,1])\rightarrow {\mathcal{B}}(M)$ can be associated, where ${\mathcal{B}}(M)$ denotes the Boolean $\sigma $-algebra of idempotent elements in $M$. This result is similar to the spectral theorem for self-adjoint operators on a Hilbert space. We also prove that MV-algebra operations are reflected by the functional calculus of observables.
MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic. MV stands for “multi-valued" and MV algebras have already occupied an important place in the realm of nonstandard (mathematical) logic applied in several fields including cybernetics. In the present paper, using the Loomis–Sikorski theorem for $\sigma $-MV-algebras, we prove that, with every element $a$ in a $\sigma $-MV algebra $M$, a spectral measure (i. e. an observable) $\Lambda _a: {\mathcal{B}}([0,1])\rightarrow {\mathcal{B}}(M)$ can be associated, where ${\mathcal{B}}(M)$ denotes the Boolean $\sigma $-algebra of idempotent elements in $M$. This result is similar to the spectral theorem for self-adjoint operators on a Hilbert space. We also prove that MV-algebra operations are reflected by the functional calculus of observables.
Classification : 03G12, 81P10
Keywords: MV-algebras; Loomis–Sikorski theorem; tribe; spectral decomposition; lattice effect algebras; compatibility; block
@article{KYB_2005_41_3_a6,
     author = {Pulmannov\'a, Sylvia},
     title = {A spectral theorem for $\sigma$ {MV-algebras}},
     journal = {Kybernetika},
     pages = {361--374},
     year = {2005},
     volume = {41},
     number = {3},
     mrnumber = {2181424},
     zbl = {1249.03119},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a6/}
}
TY  - JOUR
AU  - Pulmannová, Sylvia
TI  - A spectral theorem for $\sigma$ MV-algebras
JO  - Kybernetika
PY  - 2005
SP  - 361
EP  - 374
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a6/
LA  - en
ID  - KYB_2005_41_3_a6
ER  - 
%0 Journal Article
%A Pulmannová, Sylvia
%T A spectral theorem for $\sigma$ MV-algebras
%J Kybernetika
%D 2005
%P 361-374
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a6/
%G en
%F KYB_2005_41_3_a6
Pulmannová, Sylvia. A spectral theorem for $\sigma$ MV-algebras. Kybernetika, Tome 41 (2005) no. 3, pp. 361-374. http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a6/

[1] Belluce L. P.: Semisimple algebras of infinite valued logic and Bold fuzzy set theory. Canad. J. Math. 38 (1986), 1356–1379 | DOI | MR | Zbl

[2] Busch P., Lahti P. J., Mittelstaedt P.: The Quantum Theory of Measurement. Springer–Verlag, Berlin 1991 | MR | Zbl

[3] Butnariu D., Klement E.: Triangular-norm-based measures and their Markov kernel representation. J. Math. Anal. Appl. 162 (1991), 111–143 | DOI | MR | Zbl

[4] Barbieri G., Weber H.: Measures on clans and on MV-algebras. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, Chapt. 22, pp. 911–945 | MR | Zbl

[5] Cattaneo G., Giuntini, R., Pulmannová S.: Pre-BZ and degenerate BZ posets: Applications to fuzzy sets and unsharp quantum theories. Found. Phys. 30 (2000), 1765–1799 | DOI | MR

[6] Chang C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490 | DOI | MR | Zbl

[7] Chang C. C.: A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80 | MR | Zbl

[8] Chovanec F., Kôpka F.: D-lattices. Internat. J. Theor. Phys. 34 (1995), 1297–1302 | DOI | MR | Zbl

[9] Cignoli R., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundation of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht 2000 | MR

[10] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy on effect algebras with the Riesz decomposition property I, II. Kybernetika 41 (2005), 143–160, 161–176

[11] Chiara M. Dalla, Giuntini, R., Greechie R.: Reasoning in Quantum Theory. Kluwer Academic Publishers, Dordrecht 2004 | MR

[12] Dvurečenskij A.: Loomis–Sikorski theorem for $\sigma $-complete MV-algebras and $\ell $-groups. J. Austral. Math. Soc. Ser. A 68 (2000), 261–277 | DOI | MR | Zbl

[13] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 2000 | MR

[14] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logic. Found. Phys. 24 (1994), 1325–1346 | DOI | MR

[15] Halmos P. R.: Measure Theory. Van Nostrand, Princeton, New Jersey 1962 | MR | Zbl

[16] Kôpka F., Chovanec F.: D-posets. Math. Slovaca 44 (1994), 21–34 | MR

[17] Mundici D.: Interpretation of AF C*-algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63 | DOI | MR

[18] Mundici D.: Tensor products and the Loomis–Sikorski theorem for MV-algebras. Adv. Appl. Math. 22 (1999), 227–248 | DOI | MR | Zbl

[19] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht and VEDA, Bratislava 1991 | MR

[20] Pulmannová S.: Spectral resolutions in Dedekind $\sigma $-complete $\ell $-groups. J. Math. Anal. Appl. (to appear) | MR | Zbl

[21] Riečan B., Mundici D.: Probability on MV-algebras. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, Chapt. 21, pp. 869–909 | MR | Zbl

[22] Riečan B., Neubrunn T.: Integral, Measure and Ordering. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1997 | MR | Zbl

[23] Varadarajan V. S.: Geometry of Quantum Theory. Springer–Verlag, New York 1985 | MR | Zbl