Domination in the families of Frank and Hamacher t-norms
Kybernetika, Tome 41 (2005) no. 3, pp. 349-360 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Domination is a relation between general operations defined on a poset. The old open problem is whether domination is transitive on the set of all t-norms. In this paper we contribute partially by inspection of domination in the family of Frank and Hamacher t-norms. We show that between two different t-norms from the same family, the domination occurs iff at least one of the t-norms involved is a maximal or minimal member of the family. The immediate consequence of this observation is the transitivity of domination on both inspected families of t-norms.
Domination is a relation between general operations defined on a poset. The old open problem is whether domination is transitive on the set of all t-norms. In this paper we contribute partially by inspection of domination in the family of Frank and Hamacher t-norms. We show that between two different t-norms from the same family, the domination occurs iff at least one of the t-norms involved is a maximal or minimal member of the family. The immediate consequence of this observation is the transitivity of domination on both inspected families of t-norms.
Classification : 26D15
Keywords: domination; Frank t-norm; Hamacher $t$-norm
@article{KYB_2005_41_3_a5,
     author = {Sarkoci, Peter},
     title = {Domination in the families of {Frank} and {Hamacher} t-norms},
     journal = {Kybernetika},
     pages = {349--360},
     year = {2005},
     volume = {41},
     number = {3},
     mrnumber = {2181423},
     zbl = {1249.26041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a5/}
}
TY  - JOUR
AU  - Sarkoci, Peter
TI  - Domination in the families of Frank and Hamacher t-norms
JO  - Kybernetika
PY  - 2005
SP  - 349
EP  - 360
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a5/
LA  - en
ID  - KYB_2005_41_3_a5
ER  - 
%0 Journal Article
%A Sarkoci, Peter
%T Domination in the families of Frank and Hamacher t-norms
%J Kybernetika
%D 2005
%P 349-360
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a5/
%G en
%F KYB_2005_41_3_a5
Sarkoci, Peter. Domination in the families of Frank and Hamacher t-norms. Kybernetika, Tome 41 (2005) no. 3, pp. 349-360. http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a5/

[1] Bodenhofer U.: A Similarity-Based Generalization of Fuzzy Orderings. (Schriftenreihe der Johannes–Kepler–Universität Linz, Volume C 26.) Universitätsverlag Rudolf Trauner, Linz 1999 | Zbl

[2] Baets B. De, Mesiar R.: Pseudo-metrics and $T$-equivalences. J. Fuzzy Math. 5 (1997), 471–481 | MR

[3] Baets B. De, Mesiar R.: $T$-partitions. Fuzzy Sets and Systems 97 (1998), 211–223 | DOI | MR | Zbl

[4] Drewniak J., Drygaś, P., Dudziak U.: Relation of domination. In: FSTA 2004 Abstracts, pp. 43–44

[5] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$. Aequationes Math. 19 (1979), 194–226 | DOI | MR | Zbl

[6] Hamacher H.: Über logische Verknüpfungen unscharfer Aussagen und deren zugehörige Bewertungsfunktionen. Progress in Cybernetics and Systems Research, Hemisphere Publ. Comp., New York 1975, pp. 276–287

[7] Hamacher H.: Über logische Aggregationen nicht-binär explizierter Entscheidungskriterien. Rita G. Fischer Verlag, Frankfurt 1978

[8] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl

[9] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertain. Fuzziness Knowledge-based Systems 10 (2002), 11–35 | DOI | MR | Zbl

[10] Saminger S.: Aggregation in Evaluation of Computer-assisted Assessment. (Schriftenreihe der Johannes–Kepler–Universität Linz, Volume C 44.) Universitätsverlag Rudolf Trauner, Linz 2005 | Zbl

[11] Sherwood H.: Characterizing dominates on a family of triangular norms. Aequationes Math. 27 (1984), 255–273 | DOI | MR | Zbl

[12] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, New York 1983 | MR | Zbl

[13] Valverde L.: On the structure of F-indistinguishability operators. Fuzzy Sets and Systems 17 (1985), 313–328 | DOI | MR | Zbl