Keywords: copula; quasi-copula; $1$-Lipschitz aggregation operator; diagonal
@article{KYB_2005_41_3_a4,
author = {Klement, Erich Peter and Koles\'arov\'a, Anna},
title = {Extension to copulas and quasi-copulas as special $1${-Lipschitz} aggregation operators},
journal = {Kybernetika},
pages = {329--348},
year = {2005},
volume = {41},
number = {3},
mrnumber = {2181422},
zbl = {1249.60017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a4/}
}
Klement, Erich Peter; Kolesárová, Anna. Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators. Kybernetika, Tome 41 (2005) no. 3, pp. 329-348. http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a4/
[1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85–89 | DOI | MR | Zbl
[2] Bertino S.: On dissimilarity between cyclic permutations. Metron 35 (1977), 53–88. In Italian | MR
[3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–104 | MR | Zbl
[4] Durante F., Mesiar, R., Sempi C.: On a family of copulas constructed from the diagonal section. Soft Computing (accepted for publication) | Zbl
[5] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$. Aequationes Math. 19 (1979), 194–226 | DOI | MR | Zbl
[6] Frank M. J.: Diagonals of copulas and Schröder’s equation. Aequationes Math. 51 (1996), 150
[7] Fredricks G. A., Nelsen R. B.: Copulas constructed from diagonal sections. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136 | MR | Zbl
[8] Fredricks G. A., Nelsen R. B.: The Bertino family of copulas. In: Distributions with Given Marginals and Statistical Modelling (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91 | MR | Zbl
[9] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999) 193–205 | DOI | MR
[10] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl
[11] Kolesárová A.: $1$-Lipschitz aggregation operators and quasi-copulas. Kybernetika 39 (2003), 615–629 | MR
[12] Kolesárová A., Mordelová J.: $1$-Lipschitz and kernel aggregation operators. In: Proc. AGOP ’2001, Oviedo 2001, pp. 71–76
[13] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer, New York 1999 | DOI | MR | Zbl
[14] Nelsen R. B., Fredricks G. A.: Diagonal copulas. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 121–127 | MR | Zbl
[15] Nelsen R. B., Molina J. J. Quesada, Lallena J. A. Rodríguez, Flores M. Úbeda: Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90 (2004), 348–358 | DOI | MR
[16] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, New York 1983 | MR | Zbl
[17] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 | MR
[18] Sklar A.: Random variables, joint distribution functions, and copulas. Kybernetika 9 (1973), 449–460 | MR | Zbl
[19] Sungur E. A., Yang Y.: Diagonal copulas of Archimedean class. Comm. Statist. Theory Methods 25 (1996), 1659–1676 | DOI | MR | Zbl