Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators
Kybernetika, Tome 41 (2005) no. 3, pp. 329-348 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Smallest and greatest $1$-Lipschitz aggregation operators with given diagonal section, opposite diagonal section, and with graphs passing through a single point of the unit cube, respectively, are determined. These results are used to find smallest and greatest copulas and quasi-copulas with these properties (provided they exist).
Smallest and greatest $1$-Lipschitz aggregation operators with given diagonal section, opposite diagonal section, and with graphs passing through a single point of the unit cube, respectively, are determined. These results are used to find smallest and greatest copulas and quasi-copulas with these properties (provided they exist).
Classification : 26B99, 60E05
Keywords: copula; quasi-copula; $1$-Lipschitz aggregation operator; diagonal
@article{KYB_2005_41_3_a4,
     author = {Klement, Erich Peter and Koles\'arov\'a, Anna},
     title = {Extension to copulas and quasi-copulas as special $1${-Lipschitz} aggregation operators},
     journal = {Kybernetika},
     pages = {329--348},
     year = {2005},
     volume = {41},
     number = {3},
     mrnumber = {2181422},
     zbl = {1249.60017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a4/}
}
TY  - JOUR
AU  - Klement, Erich Peter
AU  - Kolesárová, Anna
TI  - Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators
JO  - Kybernetika
PY  - 2005
SP  - 329
EP  - 348
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a4/
LA  - en
ID  - KYB_2005_41_3_a4
ER  - 
%0 Journal Article
%A Klement, Erich Peter
%A Kolesárová, Anna
%T Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators
%J Kybernetika
%D 2005
%P 329-348
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a4/
%G en
%F KYB_2005_41_3_a4
Klement, Erich Peter; Kolesárová, Anna. Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators. Kybernetika, Tome 41 (2005) no. 3, pp. 329-348. http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a4/

[1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85–89 | DOI | MR | Zbl

[2] Bertino S.: On dissimilarity between cyclic permutations. Metron 35 (1977), 53–88. In Italian | MR

[3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–104 | MR | Zbl

[4] Durante F., Mesiar, R., Sempi C.: On a family of copulas constructed from the diagonal section. Soft Computing (accepted for publication) | Zbl

[5] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$. Aequationes Math. 19 (1979), 194–226 | DOI | MR | Zbl

[6] Frank M. J.: Diagonals of copulas and Schröder’s equation. Aequationes Math. 51 (1996), 150

[7] Fredricks G. A., Nelsen R. B.: Copulas constructed from diagonal sections. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136 | MR | Zbl

[8] Fredricks G. A., Nelsen R. B.: The Bertino family of copulas. In: Distributions with Given Marginals and Statistical Modelling (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91 | MR | Zbl

[9] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999) 193–205 | DOI | MR

[10] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl

[11] Kolesárová A.: $1$-Lipschitz aggregation operators and quasi-copulas. Kybernetika 39 (2003), 615–629 | MR

[12] Kolesárová A., Mordelová J.: $1$-Lipschitz and kernel aggregation operators. In: Proc. AGOP ’2001, Oviedo 2001, pp. 71–76

[13] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer, New York 1999 | DOI | MR | Zbl

[14] Nelsen R. B., Fredricks G. A.: Diagonal copulas. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 121–127 | MR | Zbl

[15] Nelsen R. B., Molina J. J. Quesada, Lallena J. A. Rodríguez, Flores M. Úbeda: Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90 (2004), 348–358 | DOI | MR

[16] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, New York 1983 | MR | Zbl

[17] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 | MR

[18] Sklar A.: Random variables, joint distribution functions, and copulas. Kybernetika 9 (1973), 449–460 | MR | Zbl

[19] Sungur E. A., Yang Y.: Diagonal copulas of Archimedean class. Comm. Statist. Theory Methods 25 (1996), 1659–1676 | DOI | MR | Zbl