Semicopulæ
Kybernetika, Tome 41 (2005) no. 3, pp. 315-328 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define the notion of semicopula, a concept that has already appeared in the statistical literature and study the properties of semicopulas and the connexion of this notion with those of copula, quasi-copula, $t$-norm.
We define the notion of semicopula, a concept that has already appeared in the statistical literature and study the properties of semicopulas and the connexion of this notion with those of copula, quasi-copula, $t$-norm.
Classification : 26B35, 60E05
Keywords: semicopula; copula; quasi-copula; aggregation operator; $t$-norm
@article{KYB_2005_41_3_a3,
     author = {Durante, Fabrizio and Sempi, Carlo},
     title = {Semicopul{\ae}},
     journal = {Kybernetika},
     pages = {315--328},
     year = {2005},
     volume = {41},
     number = {3},
     mrnumber = {2181421},
     zbl = {1249.26021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a3/}
}
TY  - JOUR
AU  - Durante, Fabrizio
AU  - Sempi, Carlo
TI  - Semicopulæ
JO  - Kybernetika
PY  - 2005
SP  - 315
EP  - 328
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a3/
LA  - en
ID  - KYB_2005_41_3_a3
ER  - 
%0 Journal Article
%A Durante, Fabrizio
%A Sempi, Carlo
%T Semicopulæ
%J Kybernetika
%D 2005
%P 315-328
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a3/
%G en
%F KYB_2005_41_3_a3
Durante, Fabrizio; Sempi, Carlo. Semicopulæ. Kybernetika, Tome 41 (2005) no. 3, pp. 315-328. http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a3/

[1] Agell N.: On the concavity of t-norms and triangular functions. Stochastica 8 (1984), 91–95 | MR | Zbl

[2] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85–89 | DOI | MR | Zbl

[3] Bassan B., Spizzichino F.: Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes. J. Multivariate Anal. 93 (2005), 313–339 | DOI | MR | Zbl

[4] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications (T. Calvo, R. Mesiar, and G. Mayor, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–106 | MR | Zbl

[5] Calvo T., Mesiar R.: Stability of aggregation operators. In: Proc. EUSFLAT 2001, Leicester 2001, pp. 475–478 | MR

[6] Calvo T., Pradera A.: Double aggregation operators. Fuzzy Sets and Systems 142 (2004), 15–33 | DOI | MR | Zbl

[7] Dunford N., Schwartz J. T.: Linear Operators. Part I: General Theory. Wiley, New York 1958 | MR | Zbl

[8] Durante F., Sempi C.: On the characterization of a class of binary operations on bivariate distribution functions. Submitted | Zbl

[9] Fredricks G. A., Nelsen R. B.: Copulas constructed from diagonal sections. In: Distributions With Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 129–136 | MR | Zbl

[10] Fredricks G. A., Nelsen R. B.: The Bertino family of copulas. In: Distributions with given marginals and statistical problems (C. M. Cuadras, J. Fortiana, and J. A. Rodríguez Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 81–91 | MR | Zbl

[11] Genest C., Molina J. J. Quesada, Lallena J. A. Rodríguez, Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205 | DOI | MR

[12] Kelley J. L.: General Topology. Van Nostrand, New York 1955; reprinted by Springer, New York – Heidelberg – Berlin 1975 | MR | Zbl

[13] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl

[14] Kolesárová A.: $1$-Lipschitz aggregation operators and quasi-copulas. Kybernetika 39 (2003), 615–629 | MR

[15] Mikusiński P., Sherwood, H., Taylor M. D.: The Fréchet bounds revisited. Real Anal. Exchange 17 (1991), 759–764 | MR

[16] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer–Verlag, New York 1999 | DOI | MR | Zbl

[17] Nelsen R. B., Fredricks G. A.: Diagonal copulas. In: Distributions With Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer Academic Publishers, Dordrecht 1997, pp. 121–128 | MR | Zbl

[18] Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C.: Derivability of some operations on distribution functions. In: Distributions With Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), (IMS Lecture Notes – Monogr. Ser. 28), Inst. Math. Statist., Hayward 1996, pp. 233–243 | MR

[19] Nelsen R. B., Flores M. Úbeda: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas. Submitted

[20] Schweizer B., Sklar A.: Probabilistic Metric Spaces. Elsevier, New York 1983 | MR | Zbl

[21] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 | MR

[22] Sklar A.: Random variables, joint distribution functions and copulas. Kybernetika 9 (1973), 449–460 | MR | Zbl

[23] Suarez F., Gil P.: Two families of fuzzy integrals. Fuzzy Sets and Systems 18 (1986), 67–81 | DOI | MR | Zbl

[24] Szász G.: Introduction to Lattice Theory. Academic Press, New York 1963 | MR | Zbl

[25] Flores M. Úbeda: Cópulas y quasicópulas: interrelaciones y nuevas propiedades. Aplicaciones. Ph. D. Dissertation. Universidad de Almería, Servicio de Publicaciones de la Universidad de Almería 2002