@article{KYB_2005_41_3_a1,
author = {Stup\v{n}anov\'a, Andrea},
title = {The cancellation law for pseudo-convolution},
journal = {Kybernetika},
pages = {285--296},
year = {2005},
volume = {41},
number = {3},
mrnumber = {2181419},
zbl = {1249.03103},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a1/}
}
Stupňanová, Andrea. The cancellation law for pseudo-convolution. Kybernetika, Tome 41 (2005) no. 3, pp. 285-296. http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a1/
[1] Baets B. De, Marková-Stupňanová A.: Analytical expressions for the addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 203–213 | DOI | MR | Zbl
[2] Golan J. S.: The Theory of Semirings with Applications in Mathematics and Theoretical Computer Sciences. (Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 54.) Longman, New York 1992 | MR
[3] Klement E.-P., Mesiar, R., Pap E.: Problems on triangular norms and related operators. Fuzzy Sets and Systems 145 (2004), 471–479 | MR | Zbl
[4] Klement E.-P., Mesiar, R., Pap E.: Triangular Norms. (Trends in Logic, Studia Logica Library, Vol. 8.) Kluwer Academic Publishers, Dortrecht 2000 | MR | Zbl
[5] Mareš M.: Computation Over Fuzzy Quantities. CRC Press, Boca Raton 1994 | MR | Zbl
[6] Marková A.: T-sum of L-R fuzzy numbers. Fuzzy Sets and Systems 85 (1997), 379–384 | DOI | MR
[7] Marková-Stupňanová A.: A note on the idempotent functions with respect to pseudo-convolution. Fuzzy Sets and Systems 102 (1999), 417–421 | MR | Zbl
[8] Mesiar R.: Shape preserving additions of fuzzy intervals. Fuzzy Sets and Systems 86 (1997), 73–78 | DOI | MR | Zbl
[9] Mesiar R.: Triangular-norm-based addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 231–237 | DOI | MR | Zbl
[10] Moynihan R.: On the class of $\tau _T$ semigroups of probability distribution functions. Aequationes Math. 12 (1975), 2/3, 249–261 | DOI | MR | Zbl
[11] Murofushi T., Sugeno M. : Fuzzy t-conorm integrals with respect to fuzzy measures: generalizations of Sugeno integral and Choquet integral. Fuzzy Sets and Systems 42 (1991), 51–57 | MR
[12] Pap E.: Decomposable measures and nonlinear equations. Fuzzy Sets and Systems 92 (1997), 205–221 | DOI | MR | Zbl
[13] Pap E.: Null-Additive Set Functions. Ister Science & Kluwer Academic Publishers, Dordrecht 1995 | MR | Zbl
[14] Pap E., Štajner I.: Pseudo-convolution in the theory of optimalization, probabilistic metric spaces, information, fuzzy numbers, system theory. In: Proc. IFSA’97, Praha 1997, pp. 491–495
[15] Pap E., Štajner I.: Generalized pseudo-convolution in the theory of probabilistic metric spaces, information, fuzzy numbers, system theory. Fuzzy Sets and Systems 102 (1999), 393–415 | MR
[16] Pap E., Teofanov N.: Pseudo-delta sequences. Yugoslav. J. Oper. Res. 8 (1998), 111–128 | MR
[17] Riedel T.: On $\sup $-continuous triangle functions. J. Math. Anal. Appl. 184 (1994), 382–388 | DOI | MR | Zbl
[18] Sugeno M. , Murofushi T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122 (1987), 197– 222 | DOI | MR | Zbl
[19] Wang Z., Klir G. J.: Fuzzy Measure Theory. Plenum Press, New York 1992 | MR | Zbl
[20] Zagrodny D.: The cancellation law for inf-convolution of convex functions. Studia Mathematika 110 (1994), 3, 271–282 | MR | Zbl