The cancellation law for pseudo-convolution
Kybernetika, Tome 41 (2005) no. 3, pp. 285-296 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Cancellation law for pseudo-convolutions based on triangular norms is discussed. In more details, the cases of extremal t-norms $T_M$ and $T_D$, of continuous Archimedean t-norms, and of general continuous t-norms are investigated. Several examples are included.
Cancellation law for pseudo-convolutions based on triangular norms is discussed. In more details, the cases of extremal t-norms $T_M$ and $T_D$, of continuous Archimedean t-norms, and of general continuous t-norms are investigated. Several examples are included.
Classification : 03E72, 28E10
Keywords: cancellation law; t-norm; pseudo-convolution
@article{KYB_2005_41_3_a1,
     author = {Stup\v{n}anov\'a, Andrea},
     title = {The cancellation law for pseudo-convolution},
     journal = {Kybernetika},
     pages = {285--296},
     year = {2005},
     volume = {41},
     number = {3},
     mrnumber = {2181419},
     zbl = {1249.03103},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a1/}
}
TY  - JOUR
AU  - Stupňanová, Andrea
TI  - The cancellation law for pseudo-convolution
JO  - Kybernetika
PY  - 2005
SP  - 285
EP  - 296
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a1/
LA  - en
ID  - KYB_2005_41_3_a1
ER  - 
%0 Journal Article
%A Stupňanová, Andrea
%T The cancellation law for pseudo-convolution
%J Kybernetika
%D 2005
%P 285-296
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a1/
%G en
%F KYB_2005_41_3_a1
Stupňanová, Andrea. The cancellation law for pseudo-convolution. Kybernetika, Tome 41 (2005) no. 3, pp. 285-296. http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a1/

[1] Baets B. De, Marková-Stupňanová A.: Analytical expressions for the addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 203–213 | DOI | MR | Zbl

[2] Golan J. S.: The Theory of Semirings with Applications in Mathematics and Theoretical Computer Sciences. (Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 54.) Longman, New York 1992 | MR

[3] Klement E.-P., Mesiar, R., Pap E.: Problems on triangular norms and related operators. Fuzzy Sets and Systems 145 (2004), 471–479 | MR | Zbl

[4] Klement E.-P., Mesiar, R., Pap E.: Triangular Norms. (Trends in Logic, Studia Logica Library, Vol. 8.) Kluwer Academic Publishers, Dortrecht 2000 | MR | Zbl

[5] Mareš M.: Computation Over Fuzzy Quantities. CRC Press, Boca Raton 1994 | MR | Zbl

[6] Marková A.: T-sum of L-R fuzzy numbers. Fuzzy Sets and Systems 85 (1997), 379–384 | DOI | MR

[7] Marková-Stupňanová A.: A note on the idempotent functions with respect to pseudo-convolution. Fuzzy Sets and Systems 102 (1999), 417–421 | MR | Zbl

[8] Mesiar R.: Shape preserving additions of fuzzy intervals. Fuzzy Sets and Systems 86 (1997), 73–78 | DOI | MR | Zbl

[9] Mesiar R.: Triangular-norm-based addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 231–237 | DOI | MR | Zbl

[10] Moynihan R.: On the class of $\tau _T$ semigroups of probability distribution functions. Aequationes Math. 12 (1975), 2/3, 249–261 | DOI | MR | Zbl

[11] Murofushi T., Sugeno M. : Fuzzy t-conorm integrals with respect to fuzzy measures: generalizations of Sugeno integral and Choquet integral. Fuzzy Sets and Systems 42 (1991), 51–57 | MR

[12] Pap E.: Decomposable measures and nonlinear equations. Fuzzy Sets and Systems 92 (1997), 205–221 | DOI | MR | Zbl

[13] Pap E.: Null-Additive Set Functions. Ister Science & Kluwer Academic Publishers, Dordrecht 1995 | MR | Zbl

[14] Pap E., Štajner I.: Pseudo-convolution in the theory of optimalization, probabilistic metric spaces, information, fuzzy numbers, system theory. In: Proc. IFSA’97, Praha 1997, pp. 491–495

[15] Pap E., Štajner I.: Generalized pseudo-convolution in the theory of probabilistic metric spaces, information, fuzzy numbers, system theory. Fuzzy Sets and Systems 102 (1999), 393–415 | MR

[16] Pap E., Teofanov N.: Pseudo-delta sequences. Yugoslav. J. Oper. Res. 8 (1998), 111–128 | MR

[17] Riedel T.: On $\sup $-continuous triangle functions. J. Math. Anal. Appl. 184 (1994), 382–388 | DOI | MR | Zbl

[18] Sugeno M. , Murofushi T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122 (1987), 197– 222 | DOI | MR | Zbl

[19] Wang Z., Klir G. J.: Fuzzy Measure Theory. Plenum Press, New York 1992 | MR | Zbl

[20] Zagrodny D.: The cancellation law for inf-convolution of convex functions. Studia Mathematika 110 (1994), 3, 271–282 | MR | Zbl