Keywords: fuzzy relation; reflexivity; symmetry; connectedness; $\star $-transitivity; transitivity; weak property; relation aggregation; mean; arithmetic mean; quasi-arithmetic mean; quasilinear mean; weighted average
@article{KYB_2005_41_3_a0,
author = {Drewniak, J\'ozef and Dudziak, Urszula},
title = {Aggregations preserving classes of fuzzy relations},
journal = {Kybernetika},
pages = {265--284},
year = {2005},
volume = {41},
number = {3},
mrnumber = {2181418},
zbl = {1249.03092},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a0/}
}
Drewniak, Józef; Dudziak, Urszula. Aggregations preserving classes of fuzzy relations. Kybernetika, Tome 41 (2005) no. 3, pp. 265-284. http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a0/
[1] Aczél J.: Lectures on Functional Equations and Their Applications. Academic Press, New York 1966 | MR
[2] Birkhoff G.: Lattice Theory. (Colloq. Publ. 25.) American Mathematical Society, Providence, RI 1967 | MR | Zbl
[3] Bodenhofer U.: A Similarity-based Generalization of Fuzzy Orderings. Ph.D. Thesis, Universitätsverlag Rudolf Tranuer, Linz 1999 | Zbl
[4] Calvo T., Mayor, G., (eds.) R. Mesiar: Aggregation Operators. Physica–Verlag, Heildelberg 2002 | MR | Zbl
[5] Cauchy A. L.: Cours d‘analyse de l‘Ecole Royale Polytechnique, Vol. 1, Analyse Algébraique, Debure, Paris 1821
[6] Drewniak J.: Fuzzy Relation Calculus. Silesian University, Katowice 1989 | MR | Zbl
[7] Drewniak J.: Classes of fuzzy relations. In: Abstracts 12th Internat. Seminar Fuzzy Set Theory (E. P. Klement and L. I. Valverde, eds.), Linz 1990, pp. 36–38
[8] Drewniak J.: Equations in classes of fuzzy relations. Fuzzy Sets and Systems 75 (1995), 215–228 | DOI | MR | Zbl
[9] Drewniak J., Drygaś, P., Dudziak U.: Relation of domination. In: Abstracts FSTA 2004, Liptovský Ján 2004, pp. 43–44
[10] Drewniak J., Dudziak U.: Safe transformations of fuzzy relations. In: Current Issues in Data and Knowledge Engineering (B. De Bayets et al., eds.), EXIT, Warszawa 2004, pp. 195–203
[11] Fodor J. C., Ovchinnikov S.: On aggregation of $T$-transitive fuzzy binary relations. Fuzzy Sets and Systems 72 (1995), 135–145 | DOI | MR | Zbl
[12] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994 | Zbl
[13] Goguen J. A.: L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145–174 | DOI | MR | Zbl
[14] Kolmogorov A. N.: Sur la notion de la moyenne. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. 12 (1930), 6, 388–391
[15] Leclerc B.: Aggregation of fuzzy preferences: A theoretic Arrow-like approach. Fuzzy Sets and Systems 43 (1991), 291–309 | DOI | MR | Zbl
[16] Ovchinnikov S.: Social choice and Lukasiewicz logic. Fuzzy Sets and Systems 43 (1991), 275–289 | DOI | MR | Zbl
[17] Ovchinnikov S.: Aggregating transitive fuzzy binary relations. Internat. J. Uncertain. Fuzziness Knowledge-based Systems 3 (1995), 47–55 | DOI | MR | Zbl
[18] Peneva V., Popchev I.: Aggregation of fuzzy relations. C. R. Acad. Bulgare Sci. 51 (1998), 9–10, 41–44 | MR
[19] Peneva V., Popchev I.: Aggregation of fuzzy relations in multicriteria decision making. C. R. Acad. Bulgare Sci. 54 (2001), 4, 47–52 | MR
[20] Peneva V., Popchev I.: Properties of the aggregation operators related with fuzzy relations. Fuzzy Sets and Systems 139 (2003), 3, 615–633 | MR | Zbl
[21] Roubens M., Vincke P.: Preference Modelling. Springer–Verlag, Berlin 1985 | MR | Zbl
[22] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertain. Fuzziness Knowledge-based Systems 10 (2002), Suppl., 11–35 | DOI | MR | Zbl
[23] Schreider, Ju. A.: Equality, Resemblance, and Order. Mir Publishers, Moscow 1975 | MR
[24] Wang X.: An investigation into relations between some transitivity-related concepts. Fuzzy Sets and Systems 89 (1997), 257–262 | DOI | MR | Zbl
[25] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338–353 | DOI | MR | Zbl
[26] Zadeh L. A.: Similarity relations and fuzzy orderings. Inform. Sci. 3 (1971), 177–200 | DOI | MR | Zbl