Aggregations preserving classes of fuzzy relations
Kybernetika, Tome 41 (2005) no. 3, pp. 265-284 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider aggregations of fuzzy relations using means in [0,1] (especially: minimum, maximum and quasilinear mean). After recalling fundamental properties of fuzzy relations we examine means, which preserve reflexivity, symmetry, connectedness and transitivity of fuzzy relations. Conversely, some properties of aggregated relations can be inferred from properties of aggregation results. Results of the paper are completed by suitable examples and counter- examples, which is summarized in a special table at the end of the paper.
We consider aggregations of fuzzy relations using means in [0,1] (especially: minimum, maximum and quasilinear mean). After recalling fundamental properties of fuzzy relations we examine means, which preserve reflexivity, symmetry, connectedness and transitivity of fuzzy relations. Conversely, some properties of aggregated relations can be inferred from properties of aggregation results. Results of the paper are completed by suitable examples and counter- examples, which is summarized in a special table at the end of the paper.
Classification : 03E72, 68T37
Keywords: fuzzy relation; reflexivity; symmetry; connectedness; $\star $-transitivity; transitivity; weak property; relation aggregation; mean; arithmetic mean; quasi-arithmetic mean; quasilinear mean; weighted average
@article{KYB_2005_41_3_a0,
     author = {Drewniak, J\'ozef and Dudziak, Urszula},
     title = {Aggregations preserving classes of fuzzy relations},
     journal = {Kybernetika},
     pages = {265--284},
     year = {2005},
     volume = {41},
     number = {3},
     mrnumber = {2181418},
     zbl = {1249.03092},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a0/}
}
TY  - JOUR
AU  - Drewniak, Józef
AU  - Dudziak, Urszula
TI  - Aggregations preserving classes of fuzzy relations
JO  - Kybernetika
PY  - 2005
SP  - 265
EP  - 284
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a0/
LA  - en
ID  - KYB_2005_41_3_a0
ER  - 
%0 Journal Article
%A Drewniak, Józef
%A Dudziak, Urszula
%T Aggregations preserving classes of fuzzy relations
%J Kybernetika
%D 2005
%P 265-284
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a0/
%G en
%F KYB_2005_41_3_a0
Drewniak, Józef; Dudziak, Urszula. Aggregations preserving classes of fuzzy relations. Kybernetika, Tome 41 (2005) no. 3, pp. 265-284. http://geodesic.mathdoc.fr/item/KYB_2005_41_3_a0/

[1] Aczél J.: Lectures on Functional Equations and Their Applications. Academic Press, New York 1966 | MR

[2] Birkhoff G.: Lattice Theory. (Colloq. Publ. 25.) American Mathematical Society, Providence, RI 1967 | MR | Zbl

[3] Bodenhofer U.: A Similarity-based Generalization of Fuzzy Orderings. Ph.D. Thesis, Universitätsverlag Rudolf Tranuer, Linz 1999 | Zbl

[4] Calvo T., Mayor, G., (eds.) R. Mesiar: Aggregation Operators. Physica–Verlag, Heildelberg 2002 | MR | Zbl

[5] Cauchy A. L.: Cours d‘analyse de l‘Ecole Royale Polytechnique, Vol. 1, Analyse Algébraique, Debure, Paris 1821

[6] Drewniak J.: Fuzzy Relation Calculus. Silesian University, Katowice 1989 | MR | Zbl

[7] Drewniak J.: Classes of fuzzy relations. In: Abstracts 12th Internat. Seminar Fuzzy Set Theory (E. P. Klement and L. I. Valverde, eds.), Linz 1990, pp. 36–38

[8] Drewniak J.: Equations in classes of fuzzy relations. Fuzzy Sets and Systems 75 (1995), 215–228 | DOI | MR | Zbl

[9] Drewniak J., Drygaś, P., Dudziak U.: Relation of domination. In: Abstracts FSTA 2004, Liptovský Ján 2004, pp. 43–44

[10] Drewniak J., Dudziak U.: Safe transformations of fuzzy relations. In: Current Issues in Data and Knowledge Engineering (B. De Bayets et al., eds.), EXIT, Warszawa 2004, pp. 195–203

[11] Fodor J. C., Ovchinnikov S.: On aggregation of $T$-transitive fuzzy binary relations. Fuzzy Sets and Systems 72 (1995), 135–145 | DOI | MR | Zbl

[12] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994 | Zbl

[13] Goguen J. A.: L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145–174 | DOI | MR | Zbl

[14] Kolmogorov A. N.: Sur la notion de la moyenne. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. 12 (1930), 6, 388–391

[15] Leclerc B.: Aggregation of fuzzy preferences: A theoretic Arrow-like approach. Fuzzy Sets and Systems 43 (1991), 291–309 | DOI | MR | Zbl

[16] Ovchinnikov S.: Social choice and Lukasiewicz logic. Fuzzy Sets and Systems 43 (1991), 275–289 | DOI | MR | Zbl

[17] Ovchinnikov S.: Aggregating transitive fuzzy binary relations. Internat. J. Uncertain. Fuzziness Knowledge-based Systems 3 (1995), 47–55 | DOI | MR | Zbl

[18] Peneva V., Popchev I.: Aggregation of fuzzy relations. C. R. Acad. Bulgare Sci. 51 (1998), 9–10, 41–44 | MR

[19] Peneva V., Popchev I.: Aggregation of fuzzy relations in multicriteria decision making. C. R. Acad. Bulgare Sci. 54 (2001), 4, 47–52 | MR

[20] Peneva V., Popchev I.: Properties of the aggregation operators related with fuzzy relations. Fuzzy Sets and Systems 139 (2003), 3, 615–633 | MR | Zbl

[21] Roubens M., Vincke P.: Preference Modelling. Springer–Verlag, Berlin 1985 | MR | Zbl

[22] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertain. Fuzziness Knowledge-based Systems 10 (2002), Suppl., 11–35 | DOI | MR | Zbl

[23] Schreider, Ju. A.: Equality, Resemblance, and Order. Mir Publishers, Moscow 1975 | MR

[24] Wang X.: An investigation into relations between some transitivity-related concepts. Fuzzy Sets and Systems 89 (1997), 257–262 | DOI | MR | Zbl

[25] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338–353 | DOI | MR | Zbl

[26] Zadeh L. A.: Similarity relations and fuzzy orderings. Inform. Sci. 3 (1971), 177–200 | DOI | MR | Zbl