Keywords: fuzzy modeling; interpretability; linguistic variable; machine learning
@article{KYB_2005_41_2_a8,
author = {Bodenhofer, Ulrich and Bauer, Peter},
title = {Interpretability of linguistic variables: a formal account},
journal = {Kybernetika},
pages = {227--248},
year = {2005},
volume = {41},
number = {2},
mrnumber = {2138770},
zbl = {1249.94093},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a8/}
}
Bodenhofer, Ulrich; Bauer, Peter. Interpretability of linguistic variables: a formal account. Kybernetika, Tome 41 (2005) no. 2, pp. 227-248. http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a8/
[1] Babuška R.: Construction of fuzzy systems – interplay between precision and transparency. In: Proc. Europ. Symp. on Intelligent Techniques, Aachen 2000, pp. 445–452
[2] Bikdash M.: A highly interpretable form of Sugeno inference systems. IEEE Trans. Fuzzy Systems 7 (1999), 686–696 | DOI
[3] Bodenhofer U.: The construction of ordering-based modifiers. In: Fuzzy-Neuro Systems ’99 (G. Brewka, R. Der, S. Gottwald and A. Schierwagen, eds.), Leipziger Universitätsverlag 1999, pp. 55–62
[4] Bodenhofer U.: A Similarity-Based Generalization of Fuzzy Orderings. (Schriftenreihe der Johannes-Kepler-Universität Linz C26.) Universitätsverlag Rudolf Trauner, Linz 1999 | Zbl
[5] Bodenhofer U.: A general framework for ordering fuzzy sets. In: Technologies for Constructing Intelligent Systems 1: Tasks, (B. Bouchon-Meunier, J. Guitiérrez-Ríoz, L. Magdalena, and R. R. Yager, eds., Studies in Fuzziness and Soft Computing 89), Physica–Verlag, Heidelberg 2002, pp. 213–224 | Zbl
[6] Bodenhofer U., Bauer P.: Towards an axiomatic treatment of “interpretability”. In: Proc. 6th Internat. Conference on Soft Computing, Iizuka 2000, pp. 334–339
[7] Bodenhofer U., Bauer P.: A formal model of interpretability of linguistic variables. In: Interpretability Issues in Fuzzy Modeling (J. Casillas, O. Cordón, F. Herrera and L. Magdalena, eds.), Studies in Fuzziness and Soft Computing 128), Springer, Berlin 2003, pp. 524–545 | Zbl
[8] Bodenhofer U., Cock, M. De, Kerre E. E.: Openings and closures of fuzzy preorderings: Theoretical basics and applications to fuzzy rule-based systems. Internat. J. General Systems 4 (2003), 343–360 | DOI | MR | Zbl
[9] Bodenhofer U., Klement E. P.: Genetic optimization of fuzzy classification systems – a case study. In: Computational Intelligence in Theory and Practice (B. Reusch and K.-H. Temme, eds., Advances in Soft Computing), Physica–Verlag, Heidelberg 2001, pp. 183–200 | Zbl
[10] Casillas J., Cordón O., Herrera, F., Magdalena L.: Interpretability improvements to find the balance interpretability-accuracy in fuzzy modeling: an overview. In: Interpretability Issues in Fuzzy Modeling (J. Casillas, O. Cordón, F. Herrera and L. Magdalena, eds., Studies in Fuzziness and Soft Computing 128), Springer–Verlag, Berlin 2003, pp. 3–24
[11] Casillas J., Cordón O., Herrera, F., (eds.) L. Magdalena: Interpretability Issues in Fuzzy Modeling (Studies in Fuzziness and Soft Computing 128). Springer–Verlag, Berlin 2003
[12] Cordón O., Herrera F.: A proposal for improving the accuracy of linguistic modeling. IEEE Trans. Fuzzy Systems 8 (2000), 335–344 | DOI
[13] Baets B. De: Analytical solution methods for fuzzy relational equations. In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds., The Handbooks of Fuzzy Sets 7), Kluwer Academic Publishers, Boston 2000, pp. 291–340 | MR | Zbl
[14] Baets B. De, Mesiar R.: $T$-partitions. Fuzzy Sets and Systems 97 (1998), 211–223 | DOI | MR | Zbl
[15] Cock M. De, Bodenhofer, U., Kerre E. E.: Modelling linguistic expressions using fuzzy relations. In: Proc. 6th Internat. Conference on Soft Computing, Iizuka 2000, pp. 353–360
[16] Drobics M., Bodenhofer U.: Fuzzy modeling with decision trees. In: Proc. 2002 IEEE Inernat. Conference on Systems, Man and Cybernetics, Hammamet 2002
[17] Drobics M., Bodenhofer, U., Klement E. P.: FS-FOIL: An inductive learning method for extracting interpretable fuzzy descriptions. Internat. J. Approx. Reason. 32 (2003), 131–152 | DOI | Zbl
[18] Dubois D., Prade H.: What are fuzzy rules and how to use them. Fuzzy Sets and Systems 84 (1996), 169–185 | DOI | MR | Zbl
[19] Dubois D., Prade, H., Ughetto L.: Checking the coherence and redundancy of fuzzy knowledge bases. IEEE Trans. Fuzzy Systems 5 (1997), 398–417 | DOI
[20] Dubois D., Prade, H., Ughetto L.: Fuzzy logic, control engineering and artificial intelligence. In: Fuzzy Algorithms for Control (H. B. Verbruggen, H.-J. Zimmermann, and R. Babuška, eds., International Series in Intelligent Technologies), Kluwer Academic Publishers, Boston 1999, pp. 17–57 | MR
[21] Espinosa J., Vandewalle J.: Constructing fuzzy models with linguistic integrity from numerical data – AFRELI algorithm. IEEE Trans. Fuzzy Systems 8 (2000), 591–600 | DOI
[22] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994 | Zbl
[23] Geyer–Schulz A.: Fuzzy Rule-based Expert Systems and Genetic Machine Learning. (Studies in Fuzziness 3.) Physica–Verlag, Heidelberg 1995 | Zbl
[24] Geyer–Schulz A.: The MIT beer distribution game revisited: Genetic machine learning and managerial behavior in a dynamic decision making experiment. In: Genetic Algorithms and Soft Computing (F. Herrera and J. L. Verdegay, eds.), Studies in Fuzziness and Soft Computing 8, Physica–Verlag, Heidelberg 1996, pp. 658–682
[25] Gottwald S.: Fuzzy Sets and Fuzzy Logic. Vieweg, Braunschweig 1993 | MR | Zbl
[26] Haslinger J., Bodenhofer, U., Burger M.: Data-driven construction of Sugeno controllers: Analytical aspects and new numerical methods. In: Proc. Joint 9th IFSA World Congress and 20th NAFIPS Internat. Conference, Vancouver 2001, pp. 239–244
[27] Kerre E. E., Mareš, M., Mesiar R.: On the orderings of generated fuzzy quantities. In: Proc. 7th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, Paris 1998, pp. 250–253
[28] Klement E. P., Mesiar, R., Pap E.: Triangular Norms (Trends in Logic 8). Kluwer Academic Publishers, Dordrecht 2000 | MR
[29] Kóczy L. T., Hirota K.: Ordering, distance and closeness of fuzzy sets. Fuzzy Sets and Systems 59 (1993), 281–293 | DOI | MR
[30] Kruse R., Gebhardt, J., Klawonn F.: Foundations of Fuzzy Systems. Wiley, New York 1994 | Zbl
[31] Lowen R.: Convex fuzzy sets. Fuzzy Sets and Systems 3 (1980), 291–310 | MR | Zbl
[32] Michalski R. S., Bratko, I., Kubat M.: Machine Learning and Data Mining. Wiley, Chichester 1998
[33] Muggleton S., Raedt L. De: Inductive logic programming: Theory and methods. J. Logic Program. 19/20 (1994), 629–680 | MR | Zbl
[34] Pedrycz W., Sosnowski Z. A.: Designing decision trees with the use of fuzzy granulation. IEEE Trans. Systems Man Cybernet. A 30 (2000), 151–159 | DOI
[35] Quinlan J. R.: Induction of decision trees. Mach. Learning 1 (1986), 81–106 | DOI
[36] Quinlan J. R.: Learning logical definitions from relations. Mach. Learning 5 (1990), 239–266 | DOI
[37] Ralston A., Reilly E. D., (eds.) D. Hemmendinger: Encyclopedia of Computer Science. Fourth edition. Groves Dictionaries, Williston 2000 | Zbl
[38] Ruspini E. H.: A new approach to clustering. Inform. and Control 15 (1969), 22–32 | DOI | Zbl
[39] Setnes M., Babuška, R., Verbruggen H. B.: Rule-based modeling: Precision and transparency. IEEE Trans. Systems Man Cybernet. C 28 (1998), 165–169 | DOI
[40] Setnes M., Roubos H.: GA-fuzzy modeling and classification: Complexity and performance. IEEE Trans. Fuzzy Systems 8 (2000), 509–522 | DOI
[41] Yen J., Wang, L., Gillespie C. W.: Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Trans. Fuzzy Systems 6 (1998), 530–537 | DOI
[42] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338–353 | DOI | MR | Zbl
[43] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning I. Inform. Sci. 8 (1975), 199–250 | MR | Zbl
[44] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning II. Inform. Sci. 8 (1975), 301–357 | DOI | MR | Zbl
[45] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning III. Inform. Sci. 9 (1975), 43–80 | DOI | MR | Zbl