Interpretability of linguistic variables: a formal account
Kybernetika, Tome 41 (2005) no. 2, pp. 227-248 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This contribution is concerned with the interpretability of fuzzy rule-based systems. While this property is widely considered to be a crucial one in fuzzy rule-based modeling, a more detailed formal investigation of what “interpretability” actually means is not available. So far, interpretability has most often been associated with rather heuristic assumptions about shape and mutual overlapping of fuzzy membership functions. In this paper, we attempt to approach this problem from a more general and formal point of view. First, we clarify what the different aspects of interpretability are in our opinion. Consequently, we propose an axiomatic framework for dealing with the interpretability of linguistic variables (in Zadeh’s original sense) which is underlined by examples and application aspects, such as, fuzzy systems design aid, data-driven learning and tuning, and rule base simplification.
This contribution is concerned with the interpretability of fuzzy rule-based systems. While this property is widely considered to be a crucial one in fuzzy rule-based modeling, a more detailed formal investigation of what “interpretability” actually means is not available. So far, interpretability has most often been associated with rather heuristic assumptions about shape and mutual overlapping of fuzzy membership functions. In this paper, we attempt to approach this problem from a more general and formal point of view. First, we clarify what the different aspects of interpretability are in our opinion. Consequently, we propose an axiomatic framework for dealing with the interpretability of linguistic variables (in Zadeh’s original sense) which is underlined by examples and application aspects, such as, fuzzy systems design aid, data-driven learning and tuning, and rule base simplification.
Classification : 68T05, 68T35, 68T37, 94D05
Keywords: fuzzy modeling; interpretability; linguistic variable; machine learning
@article{KYB_2005_41_2_a8,
     author = {Bodenhofer, Ulrich and Bauer, Peter},
     title = {Interpretability of linguistic variables: a formal account},
     journal = {Kybernetika},
     pages = {227--248},
     year = {2005},
     volume = {41},
     number = {2},
     mrnumber = {2138770},
     zbl = {1249.94093},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a8/}
}
TY  - JOUR
AU  - Bodenhofer, Ulrich
AU  - Bauer, Peter
TI  - Interpretability of linguistic variables: a formal account
JO  - Kybernetika
PY  - 2005
SP  - 227
EP  - 248
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a8/
LA  - en
ID  - KYB_2005_41_2_a8
ER  - 
%0 Journal Article
%A Bodenhofer, Ulrich
%A Bauer, Peter
%T Interpretability of linguistic variables: a formal account
%J Kybernetika
%D 2005
%P 227-248
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a8/
%G en
%F KYB_2005_41_2_a8
Bodenhofer, Ulrich; Bauer, Peter. Interpretability of linguistic variables: a formal account. Kybernetika, Tome 41 (2005) no. 2, pp. 227-248. http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a8/

[1] Babuška R.: Construction of fuzzy systems – interplay between precision and transparency. In: Proc. Europ. Symp. on Intelligent Techniques, Aachen 2000, pp. 445–452

[2] Bikdash M.: A highly interpretable form of Sugeno inference systems. IEEE Trans. Fuzzy Systems 7 (1999), 686–696 | DOI

[3] Bodenhofer U.: The construction of ordering-based modifiers. In: Fuzzy-Neuro Systems ’99 (G. Brewka, R. Der, S. Gottwald and A. Schierwagen, eds.), Leipziger Universitätsverlag 1999, pp. 55–62

[4] Bodenhofer U.: A Similarity-Based Generalization of Fuzzy Orderings. (Schriftenreihe der Johannes-Kepler-Universität Linz C26.) Universitätsverlag Rudolf Trauner, Linz 1999 | Zbl

[5] Bodenhofer U.: A general framework for ordering fuzzy sets. In: Technologies for Constructing Intelligent Systems 1: Tasks, (B. Bouchon-Meunier, J. Guitiérrez-Ríoz, L. Magdalena, and R. R. Yager, eds., Studies in Fuzziness and Soft Computing 89), Physica–Verlag, Heidelberg 2002, pp. 213–224 | Zbl

[6] Bodenhofer U., Bauer P.: Towards an axiomatic treatment of “interpretability”. In: Proc. 6th Internat. Conference on Soft Computing, Iizuka 2000, pp. 334–339

[7] Bodenhofer U., Bauer P.: A formal model of interpretability of linguistic variables. In: Interpretability Issues in Fuzzy Modeling (J. Casillas, O. Cordón, F. Herrera and L. Magdalena, eds.), Studies in Fuzziness and Soft Computing 128), Springer, Berlin 2003, pp. 524–545 | Zbl

[8] Bodenhofer U., Cock, M. De, Kerre E. E.: Openings and closures of fuzzy preorderings: Theoretical basics and applications to fuzzy rule-based systems. Internat. J. General Systems 4 (2003), 343–360 | DOI | MR | Zbl

[9] Bodenhofer U., Klement E. P.: Genetic optimization of fuzzy classification systems – a case study. In: Computational Intelligence in Theory and Practice (B. Reusch and K.-H. Temme, eds., Advances in Soft Computing), Physica–Verlag, Heidelberg 2001, pp. 183–200 | Zbl

[10] Casillas J., Cordón O., Herrera, F., Magdalena L.: Interpretability improvements to find the balance interpretability-accuracy in fuzzy modeling: an overview. In: Interpretability Issues in Fuzzy Modeling (J. Casillas, O. Cordón, F. Herrera and L. Magdalena, eds., Studies in Fuzziness and Soft Computing 128), Springer–Verlag, Berlin 2003, pp. 3–24

[11] Casillas J., Cordón O., Herrera, F., (eds.) L. Magdalena: Interpretability Issues in Fuzzy Modeling (Studies in Fuzziness and Soft Computing 128). Springer–Verlag, Berlin 2003

[12] Cordón O., Herrera F.: A proposal for improving the accuracy of linguistic modeling. IEEE Trans. Fuzzy Systems 8 (2000), 335–344 | DOI

[13] Baets B. De: Analytical solution methods for fuzzy relational equations. In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds., The Handbooks of Fuzzy Sets 7), Kluwer Academic Publishers, Boston 2000, pp. 291–340 | MR | Zbl

[14] Baets B. De, Mesiar R.: $T$-partitions. Fuzzy Sets and Systems 97 (1998), 211–223 | DOI | MR | Zbl

[15] Cock M. De, Bodenhofer, U., Kerre E. E.: Modelling linguistic expressions using fuzzy relations. In: Proc. 6th Internat. Conference on Soft Computing, Iizuka 2000, pp. 353–360

[16] Drobics M., Bodenhofer U.: Fuzzy modeling with decision trees. In: Proc. 2002 IEEE Inernat. Conference on Systems, Man and Cybernetics, Hammamet 2002

[17] Drobics M., Bodenhofer, U., Klement E. P.: FS-FOIL: An inductive learning method for extracting interpretable fuzzy descriptions. Internat. J. Approx. Reason. 32 (2003), 131–152 | DOI | Zbl

[18] Dubois D., Prade H.: What are fuzzy rules and how to use them. Fuzzy Sets and Systems 84 (1996), 169–185 | DOI | MR | Zbl

[19] Dubois D., Prade, H., Ughetto L.: Checking the coherence and redundancy of fuzzy knowledge bases. IEEE Trans. Fuzzy Systems 5 (1997), 398–417 | DOI

[20] Dubois D., Prade, H., Ughetto L.: Fuzzy logic, control engineering and artificial intelligence. In: Fuzzy Algorithms for Control (H. B. Verbruggen, H.-J. Zimmermann, and R. Babuška, eds., International Series in Intelligent Technologies), Kluwer Academic Publishers, Boston 1999, pp. 17–57 | MR

[21] Espinosa J., Vandewalle J.: Constructing fuzzy models with linguistic integrity from numerical data – AFRELI algorithm. IEEE Trans. Fuzzy Systems 8 (2000), 591–600 | DOI

[22] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994 | Zbl

[23] Geyer–Schulz A.: Fuzzy Rule-based Expert Systems and Genetic Machine Learning. (Studies in Fuzziness 3.) Physica–Verlag, Heidelberg 1995 | Zbl

[24] Geyer–Schulz A.: The MIT beer distribution game revisited: Genetic machine learning and managerial behavior in a dynamic decision making experiment. In: Genetic Algorithms and Soft Computing (F. Herrera and J. L. Verdegay, eds.), Studies in Fuzziness and Soft Computing 8, Physica–Verlag, Heidelberg 1996, pp. 658–682

[25] Gottwald S.: Fuzzy Sets and Fuzzy Logic. Vieweg, Braunschweig 1993 | MR | Zbl

[26] Haslinger J., Bodenhofer, U., Burger M.: Data-driven construction of Sugeno controllers: Analytical aspects and new numerical methods. In: Proc. Joint 9th IFSA World Congress and 20th NAFIPS Internat. Conference, Vancouver 2001, pp. 239–244

[27] Kerre E. E., Mareš, M., Mesiar R.: On the orderings of generated fuzzy quantities. In: Proc. 7th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems, Paris 1998, pp. 250–253

[28] Klement E. P., Mesiar, R., Pap E.: Triangular Norms (Trends in Logic 8). Kluwer Academic Publishers, Dordrecht 2000 | MR

[29] Kóczy L. T., Hirota K.: Ordering, distance and closeness of fuzzy sets. Fuzzy Sets and Systems 59 (1993), 281–293 | DOI | MR

[30] Kruse R., Gebhardt, J., Klawonn F.: Foundations of Fuzzy Systems. Wiley, New York 1994 | Zbl

[31] Lowen R.: Convex fuzzy sets. Fuzzy Sets and Systems 3 (1980), 291–310 | MR | Zbl

[32] Michalski R. S., Bratko, I., Kubat M.: Machine Learning and Data Mining. Wiley, Chichester 1998

[33] Muggleton S., Raedt L. De: Inductive logic programming: Theory and methods. J. Logic Program. 19/20 (1994), 629–680 | MR | Zbl

[34] Pedrycz W., Sosnowski Z. A.: Designing decision trees with the use of fuzzy granulation. IEEE Trans. Systems Man Cybernet. A 30 (2000), 151–159 | DOI

[35] Quinlan J. R.: Induction of decision trees. Mach. Learning 1 (1986), 81–106 | DOI

[36] Quinlan J. R.: Learning logical definitions from relations. Mach. Learning 5 (1990), 239–266 | DOI

[37] Ralston A., Reilly E. D., (eds.) D. Hemmendinger: Encyclopedia of Computer Science. Fourth edition. Groves Dictionaries, Williston 2000 | Zbl

[38] Ruspini E. H.: A new approach to clustering. Inform. and Control 15 (1969), 22–32 | DOI | Zbl

[39] Setnes M., Babuška, R., Verbruggen H. B.: Rule-based modeling: Precision and transparency. IEEE Trans. Systems Man Cybernet. C 28 (1998), 165–169 | DOI

[40] Setnes M., Roubos H.: GA-fuzzy modeling and classification: Complexity and performance. IEEE Trans. Fuzzy Systems 8 (2000), 509–522 | DOI

[41] Yen J., Wang, L., Gillespie C. W.: Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Trans. Fuzzy Systems 6 (1998), 530–537 | DOI

[42] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338–353 | DOI | MR | Zbl

[43] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning I. Inform. Sci. 8 (1975), 199–250 | MR | Zbl

[44] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning II. Inform. Sci. 8 (1975), 301–357 | DOI | MR | Zbl

[45] Zadeh L. A.: The concept of a linguistic variable and its application to approximate reasoning III. Inform. Sci. 9 (1975), 43–80 | DOI | MR | Zbl