Keywords: fuzzy measure; distorted measure; belief measure; plausibility measure
@article{KYB_2005_41_2_a6,
author = {Val\'a\v{s}kov\'a, \v{L}ubica and Struk, Peter},
title = {Classes of fuzzy measures and distortion},
journal = {Kybernetika},
pages = {205--212},
year = {2005},
volume = {41},
number = {2},
mrnumber = {2138768},
zbl = {1249.28032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a6/}
}
Valášková, Ľubica; Struk, Peter. Classes of fuzzy measures and distortion. Kybernetika, Tome 41 (2005) no. 2, pp. 205-212. http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a6/
[1] Aumann R. J., Shapley L. S.: Values of Non-Atomic Games. Princeton University Press, Princeton 1974 | MR | Zbl
[2] Bronevich A. G.: Aggregation operators of fuzzy measures. Properties of inheritance, submitted
[3] Bronevich A. G., Lepskiy A. E.: Operators for Convolution of Fuzzy Measures. In: Soft Methods in Probability, Statistics and Data Analysis, Advances in Soft Computing, Physica–Verlag, Heidelberg 2002, pp. 84–91 | MR
[4] Denneberg D.: Non-Additive Measure and Integral. Kluwer Academic Publishers, Dordrecht 1994 | MR | Zbl
[5] Dubois D., Prade H.: Possibility Theory. Plenum Press, New York 1998 | MR | Zbl
[6] Dzjadyk V. K.: Vvedenie v teoriju ravnomernogo približenia funkcij polinomami. Nauka, Moskva 1977
[7] Pap E.: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht – Boston – London and Ister Science, Bratislava 1995 | MR | Zbl
[8] (ed.) E. Pap: Handbook on Measure Theory. Elsevier, Amsterdam 2002
[9] Struk P., Valášková Ĺ.: Preservation of distinguished fuzzy measure classes by distortion. In: Uncertainty Modelling 2003, Publishing House of STU, Bratislava 2003, pp. 48–51 | Zbl
[10] Stupňanová A., Struk P.: Pessimistic and optimistic fuzzy measures on finite sets. In: MaGiA 2003, Publishing House of STU, Bratislava 2003, pp. 94–100
[11] Wang Z., Klir G.: Fuzzy Measure Theory. Plenum Press, New York – London 1992 | MR | Zbl