Entropy on effect algebras with Riesz decomposition property II: MV-algebras
Kybernetika, Tome 41 (2005) no. 2, pp. 161-176 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the entropy mainly on special effect algebras with (RDP), namely on tribes of fuzzy sets and sigma-complete MV-algebras. We generalize results from [RiMu] and [RiNe] which were known only for special tribes.
We study the entropy mainly on special effect algebras with (RDP), namely on tribes of fuzzy sets and sigma-complete MV-algebras. We generalize results from [RiMu] and [RiNe] which were known only for special tribes.
Classification : 03B50, 03G12, 06D35, 28A20, 37B40
Keywords: effect algebra; Riesz decomposition property; MV-algebra; state; entropy
@article{KYB_2005_41_2_a4,
     author = {Di Nola, Antonio and Dvure\v{c}enskij, Anatolij and Hy\v{c}ko, Marek and Manara, Corrado},
     title = {Entropy on effect algebras with {Riesz} decomposition property {II:} {MV-algebras}},
     journal = {Kybernetika},
     pages = {161--176},
     year = {2005},
     volume = {41},
     number = {2},
     mrnumber = {2138766},
     zbl = {1249.03116},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a4/}
}
TY  - JOUR
AU  - Di Nola, Antonio
AU  - Dvurečenskij, Anatolij
AU  - Hyčko, Marek
AU  - Manara, Corrado
TI  - Entropy on effect algebras with Riesz decomposition property II: MV-algebras
JO  - Kybernetika
PY  - 2005
SP  - 161
EP  - 176
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a4/
LA  - en
ID  - KYB_2005_41_2_a4
ER  - 
%0 Journal Article
%A Di Nola, Antonio
%A Dvurečenskij, Anatolij
%A Hyčko, Marek
%A Manara, Corrado
%T Entropy on effect algebras with Riesz decomposition property II: MV-algebras
%J Kybernetika
%D 2005
%P 161-176
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a4/
%G en
%F KYB_2005_41_2_a4
Di Nola, Antonio; Dvurečenskij, Anatolij; Hyčko, Marek; Manara, Corrado. Entropy on effect algebras with Riesz decomposition property II: MV-algebras. Kybernetika, Tome 41 (2005) no. 2, pp. 161-176. http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a4/

[1] Butnariu D., Klement P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions, Kluwer Academic Publishers, Dordrecht 199.

[2] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy of effect algebras with the Riesz decomposition property I: Basic properties. Kybernetika 41 (2005), 143–160 | MR

[3] Nola A. Di, Dvurečenskij, A., Jakubík J.: Good and bad infinitesimals, and states on pseudo MV-algebras, submitte.

[4] Dvurečenskij A.: Loomis–Sikorski theorem for $\sigma $-complete MV-algebras and $\ell $-groups. J. Austral. Math. Soc. Ser. A 68 (2000), 261–277 | DOI | MR | Zbl

[5] Dvurečenskij A.: MV-observables and MV-algebras. J. Math. Anal. Appl. 259 (2001), 413–428 | DOI | MR | Zbl

[6] Dvurečenskij A.: Central elements and Cantor–Bernstein’s theorem for pseudo-effect alegbras. J. Austral. Math. Soc. 74 (2003), 121–143 | DOI | MR

[7] Dvurečenskij A.: Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups, submitte.

[8] Dvurečenskij A.: Product effect algebras. Inter. J. Theor. Phys. 41 (2002), 1827–1839 | MR | Zbl

[9] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 200. | MR

[10] Fuchs L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford – London – New York – Paris 1963 | MR | Zbl

[11] Goodearl K. R.: Partially Ordered Abelian Groups with Interpolation. (Math. Surveys and Monographs No. 20.) Amer. Math. Society, Providence, RI 1986 | MR | Zbl

[12] Mundici D.: Tensor products and the Loomis–Sikorski theorem for MV-algebras. Advan. Appl. Math. 22 (1999), 227–248 | DOI | MR | Zbl

[13] Riečan B.: Kolmogorov–Sinaj entropy on MV-algebras, submitte.

[14] Riečan B., Mundici D.: Probability on MV-algebras. In: Handbook of Measure Theory (E. Pap, ed.), Elsevier Science, Amsterdam 2002, Vol. II, pp. 869–909 | MR | Zbl

[15] Riečan B., Neubrunn T.: Integral, Measure and Ordering, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 199. | MR