Keywords: effect algebra; Riesz decomposition property; MV-algebra; state; entropy
@article{KYB_2005_41_2_a4,
author = {Di Nola, Antonio and Dvure\v{c}enskij, Anatolij and Hy\v{c}ko, Marek and Manara, Corrado},
title = {Entropy on effect algebras with {Riesz} decomposition property {II:} {MV-algebras}},
journal = {Kybernetika},
pages = {161--176},
year = {2005},
volume = {41},
number = {2},
mrnumber = {2138766},
zbl = {1249.03116},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a4/}
}
TY - JOUR AU - Di Nola, Antonio AU - Dvurečenskij, Anatolij AU - Hyčko, Marek AU - Manara, Corrado TI - Entropy on effect algebras with Riesz decomposition property II: MV-algebras JO - Kybernetika PY - 2005 SP - 161 EP - 176 VL - 41 IS - 2 UR - http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a4/ LA - en ID - KYB_2005_41_2_a4 ER -
%0 Journal Article %A Di Nola, Antonio %A Dvurečenskij, Anatolij %A Hyčko, Marek %A Manara, Corrado %T Entropy on effect algebras with Riesz decomposition property II: MV-algebras %J Kybernetika %D 2005 %P 161-176 %V 41 %N 2 %U http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a4/ %G en %F KYB_2005_41_2_a4
Di Nola, Antonio; Dvurečenskij, Anatolij; Hyčko, Marek; Manara, Corrado. Entropy on effect algebras with Riesz decomposition property II: MV-algebras. Kybernetika, Tome 41 (2005) no. 2, pp. 161-176. http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a4/
[1] Butnariu D., Klement P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions, Kluwer Academic Publishers, Dordrecht 199.
[2] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy of effect algebras with the Riesz decomposition property I: Basic properties. Kybernetika 41 (2005), 143–160 | MR
[3] Nola A. Di, Dvurečenskij, A., Jakubík J.: Good and bad infinitesimals, and states on pseudo MV-algebras, submitte.
[4] Dvurečenskij A.: Loomis–Sikorski theorem for $\sigma $-complete MV-algebras and $\ell $-groups. J. Austral. Math. Soc. Ser. A 68 (2000), 261–277 | DOI | MR | Zbl
[5] Dvurečenskij A.: MV-observables and MV-algebras. J. Math. Anal. Appl. 259 (2001), 413–428 | DOI | MR | Zbl
[6] Dvurečenskij A.: Central elements and Cantor–Bernstein’s theorem for pseudo-effect alegbras. J. Austral. Math. Soc. 74 (2003), 121–143 | DOI | MR
[7] Dvurečenskij A.: Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups, submitte.
[8] Dvurečenskij A.: Product effect algebras. Inter. J. Theor. Phys. 41 (2002), 1827–1839 | MR | Zbl
[9] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 200. | MR
[10] Fuchs L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford – London – New York – Paris 1963 | MR | Zbl
[11] Goodearl K. R.: Partially Ordered Abelian Groups with Interpolation. (Math. Surveys and Monographs No. 20.) Amer. Math. Society, Providence, RI 1986 | MR | Zbl
[12] Mundici D.: Tensor products and the Loomis–Sikorski theorem for MV-algebras. Advan. Appl. Math. 22 (1999), 227–248 | DOI | MR | Zbl
[13] Riečan B.: Kolmogorov–Sinaj entropy on MV-algebras, submitte.
[14] Riečan B., Mundici D.: Probability on MV-algebras. In: Handbook of Measure Theory (E. Pap, ed.), Elsevier Science, Amsterdam 2002, Vol. II, pp. 869–909 | MR | Zbl
[15] Riečan B., Neubrunn T.: Integral, Measure and Ordering, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 199. | MR