Keywords: effect algebra; Riesz decomposition property; MV-algebra; state; entropy
@article{KYB_2005_41_2_a3,
author = {Di Nola, Antonio and Dvure\v{c}enskij, Anatolij and Hy\v{c}ko, Marek and Manara, Corrado},
title = {Entropy on effect algebras with the {Riesz} decomposition property {I:} {Basic} properties},
journal = {Kybernetika},
pages = {143--160},
year = {2005},
volume = {41},
number = {2},
mrnumber = {2138765},
zbl = {1249.03115},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a3/}
}
TY - JOUR AU - Di Nola, Antonio AU - Dvurečenskij, Anatolij AU - Hyčko, Marek AU - Manara, Corrado TI - Entropy on effect algebras with the Riesz decomposition property I: Basic properties JO - Kybernetika PY - 2005 SP - 143 EP - 160 VL - 41 IS - 2 UR - http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a3/ LA - en ID - KYB_2005_41_2_a3 ER -
%0 Journal Article %A Di Nola, Antonio %A Dvurečenskij, Anatolij %A Hyčko, Marek %A Manara, Corrado %T Entropy on effect algebras with the Riesz decomposition property I: Basic properties %J Kybernetika %D 2005 %P 143-160 %V 41 %N 2 %U http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a3/ %G en %F KYB_2005_41_2_a3
Di Nola, Antonio; Dvurečenskij, Anatolij; Hyčko, Marek; Manara, Corrado. Entropy on effect algebras with the Riesz decomposition property I: Basic properties. Kybernetika, Tome 41 (2005) no. 2, pp. 143-160. http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a3/
[1] Chang C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490 | DOI | MR | Zbl
[2] Chovanec F.: States and observables on MV-algebras. Tatra Mt. Math. Publ. 3 (1993), 55–65 | MR | Zbl
[3] Cignoli R., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl
[4] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy of effect algebras with the Riesz decomposition property II. MV-algebras. Kybernetika 41 (2005), 161–175 | MR
[5] Dvurečenskij A.: Central elements and Cantor–Bernstein’s theorem for pseudo-effect algebras. J. Austral. Math. Soc. 74 (2003), 121–143 | DOI | MR | Zbl
[6] Dvurečenskij A.: Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups, submitte.
[7] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 2000 | MR
[8] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346 | DOI | MR
[9] Goodearl K. R.: Partially Ordered Abelian Groups with Interpolation. (Math. Surveys and Monographs No. 20.) Amer. Math. Society, Providence, RI 1986 | MR | Zbl
[10] Greechie R. J.: Orthomodular lattices admitting no states. J. Comb. Theory 10 (1971), 119–132 | DOI | MR | Zbl
[11] Kôpka F., Chovanec F.: D-posets. Math. Slovaca 44 (1994), 21–34 | MR
[12] Maličký P., Riečan B.: On the entropy of dynamical systems. In: Proc. Conference Ergodic Theory and Related Topics II, Georgenthal 1986, Teubner, Leipzig 1987, pp. 135–138 | MR
[13] Mundici D.: Interpretation of AF $C^*$-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63 | DOI | MR | Zbl
[14] Mundici D.: Averaging the truth-value in Łukasiewicz logic. Studia Logica 55 (1995), 113–127 | DOI | MR | Zbl
[15] Petrovičová J.: On the entropy of dynamical systems in product MV algebras. Fuzzy Sets and Systems 121 (2001), 347–351 | Zbl
[16] Petrovičová J.: On the entropy of partitions in product MV algebras. Soft Computing 4 (2000), 41–44 | DOI | Zbl
[17] Riečan B.: Kolmogorov-Sinaj entropy on MV-algebras, submitte.
[18] Riečan B., Mundici D.: Probability on MV-algebras. In: Handbook of Measure Theory (E. Pap, ed.), Elsevier Science, Amsterdam 2002, Vol. II, pp. 869–909 | MR | Zbl
[19] Riečan B., Neubrunn T.: Integral, Measure and Ordering. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava, 1997 | MR | Zbl
[20] Ravindran K.: On a Structure Theory of Effect Algebras. Ph.D. Thesis, Kansas State University, Manhattan 1996 | MR