Entropy on effect algebras with the Riesz decomposition property I: Basic properties
Kybernetika, Tome 41 (2005) no. 2, pp. 143-160 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We define the entropy, lower and upper entropy, and the conditional entropy of a dynamical system consisting of an effect algebra with the Riesz decomposition property, a state, and a transformation. Such effect algebras allow many refinements of two partitions. We present the basic properties of these entropies and these notions are illustrated by many examples. Entropy on MV-algebras is postponed to Part II.
We define the entropy, lower and upper entropy, and the conditional entropy of a dynamical system consisting of an effect algebra with the Riesz decomposition property, a state, and a transformation. Such effect algebras allow many refinements of two partitions. We present the basic properties of these entropies and these notions are illustrated by many examples. Entropy on MV-algebras is postponed to Part II.
Classification : 03B50, 03G12, 06D35, 28A20, 37B40
Keywords: effect algebra; Riesz decomposition property; MV-algebra; state; entropy
@article{KYB_2005_41_2_a3,
     author = {Di Nola, Antonio and Dvure\v{c}enskij, Anatolij and Hy\v{c}ko, Marek and Manara, Corrado},
     title = {Entropy on effect algebras with the {Riesz} decomposition property {I:} {Basic} properties},
     journal = {Kybernetika},
     pages = {143--160},
     year = {2005},
     volume = {41},
     number = {2},
     mrnumber = {2138765},
     zbl = {1249.03115},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a3/}
}
TY  - JOUR
AU  - Di Nola, Antonio
AU  - Dvurečenskij, Anatolij
AU  - Hyčko, Marek
AU  - Manara, Corrado
TI  - Entropy on effect algebras with the Riesz decomposition property I: Basic properties
JO  - Kybernetika
PY  - 2005
SP  - 143
EP  - 160
VL  - 41
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a3/
LA  - en
ID  - KYB_2005_41_2_a3
ER  - 
%0 Journal Article
%A Di Nola, Antonio
%A Dvurečenskij, Anatolij
%A Hyčko, Marek
%A Manara, Corrado
%T Entropy on effect algebras with the Riesz decomposition property I: Basic properties
%J Kybernetika
%D 2005
%P 143-160
%V 41
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a3/
%G en
%F KYB_2005_41_2_a3
Di Nola, Antonio; Dvurečenskij, Anatolij; Hyčko, Marek; Manara, Corrado. Entropy on effect algebras with the Riesz decomposition property I: Basic properties. Kybernetika, Tome 41 (2005) no. 2, pp. 143-160. http://geodesic.mathdoc.fr/item/KYB_2005_41_2_a3/

[1] Chang C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490 | DOI | MR | Zbl

[2] Chovanec F.: States and observables on MV-algebras. Tatra Mt. Math. Publ. 3 (1993), 55–65 | MR | Zbl

[3] Cignoli R., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl

[4] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy of effect algebras with the Riesz decomposition property II. MV-algebras. Kybernetika 41 (2005), 161–175 | MR

[5] Dvurečenskij A.: Central elements and Cantor–Bernstein’s theorem for pseudo-effect algebras. J. Austral. Math. Soc. 74 (2003), 121–143 | DOI | MR | Zbl

[6] Dvurečenskij A.: Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups, submitte.

[7] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 2000 | MR

[8] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346 | DOI | MR

[9] Goodearl K. R.: Partially Ordered Abelian Groups with Interpolation. (Math. Surveys and Monographs No. 20.) Amer. Math. Society, Providence, RI 1986 | MR | Zbl

[10] Greechie R. J.: Orthomodular lattices admitting no states. J. Comb. Theory 10 (1971), 119–132 | DOI | MR | Zbl

[11] Kôpka F., Chovanec F.: D-posets. Math. Slovaca 44 (1994), 21–34 | MR

[12] Maličký P., Riečan B.: On the entropy of dynamical systems. In: Proc. Conference Ergodic Theory and Related Topics II, Georgenthal 1986, Teubner, Leipzig 1987, pp. 135–138 | MR

[13] Mundici D.: Interpretation of AF $C^*$-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63 | DOI | MR | Zbl

[14] Mundici D.: Averaging the truth-value in Łukasiewicz logic. Studia Logica 55 (1995), 113–127 | DOI | MR | Zbl

[15] Petrovičová J.: On the entropy of dynamical systems in product MV algebras. Fuzzy Sets and Systems 121 (2001), 347–351 | Zbl

[16] Petrovičová J.: On the entropy of partitions in product MV algebras. Soft Computing 4 (2000), 41–44 | DOI | Zbl

[17] Riečan B.: Kolmogorov-Sinaj entropy on MV-algebras, submitte.

[18] Riečan B., Mundici D.: Probability on MV-algebras. In: Handbook of Measure Theory (E. Pap, ed.), Elsevier Science, Amsterdam 2002, Vol. II, pp. 869–909 | MR | Zbl

[19] Riečan B., Neubrunn T.: Integral, Measure and Ordering. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava, 1997 | MR | Zbl

[20] Ravindran K.: On a Structure Theory of Effect Algebras. Ph.D. Thesis, Kansas State University, Manhattan 1996 | MR