Keywords: invariance; structure; stability; structural condition; Lyapunov function
@article{KYB_2005_41_1_a4,
author = {\v{C}ern\'y, V\'aclav and Hru\v{s}\'ak, Josef},
title = {Non-linear observer design method based on dissipation normal form},
journal = {Kybernetika},
pages = {59--74},
year = {2005},
volume = {41},
number = {1},
mrnumber = {2131125},
zbl = {1249.93021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a4/}
}
Černý, Václav; Hrušák, Josef. Non-linear observer design method based on dissipation normal form. Kybernetika, Tome 41 (2005) no. 1, pp. 59-74. http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a4/
[1] Atassi A. N., Khalil H. K.: A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans. Automat. Control 44 (1999), 1672–1687 | DOI | MR | Zbl
[2] Atassi A. N., Khalil H. K.: A separation principle for the control of a class of nonlinear systems. IEEE Trans. Automat. Control 46 (2001), 742–746 | DOI | MR | Zbl
[3] Bestle D., Zeitz M.: Canonical form observer design for non-linear time-variable systems. Internat. J. Control 38 (1983), 419–431 | DOI | MR
[4] Birk J., Zeitz M.: Extended Luenberger observer for non-linear multivariable systems. Internat. J. Control 47 (1988), 1823–1836 | DOI | MR
[5] Chiasson J. N., Novotnak R. T.: Nonlinear speed observer for the pm stepper motor. IEEE Trans. Automat. Control 38 (1993), 1584–1588 | DOI | MR
[6] Černý V., Hrušák J.: Separation principle for a class of non-linear systems. In: Proc. 11th IEEE Mediterranean Conference on Control and Automation, Rhodes 2003
[7] Černý V., Hrušák J.: On some new similarities between nonlinear observer and filter design. In: Preprints 6th IFAC Symposium on Nonlinear Control Systems, Vol. 2, Stuttgart 2004, pp. 609–614
[8] Esfandiari F., Khalil H. K.: Output feedback stabilization of fully linearizable systems. Internat. J. Control 56 (1992), 1007–1037 | DOI | MR | Zbl
[9] Gauthier J. P., Bornard G.: Observability for any $u(t)$ of a class of nonlinear systems. IEEE Trans. Automat. Control 26 (1981), 922–926 | DOI | MR | Zbl
[10] Gauthier J. P., Hammouri, H., Othman S.: A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Automat. Control 37 (1992), 875–880 | DOI | MR | Zbl
[11] Glendinning P.: Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations. Cambridge University Press, New York 1994 | MR | Zbl
[12] Glumineau A., Moog C. H., Plestan F.: New algebro-geometric conditions for the linearization by input-output injection. IEEE Trans. Automat. Control 41 (1996), 598–603 | DOI | MR | Zbl
[13] Hrušák J.: Anwendung der Äquivalenz bei Stabilitätsprüfung, Tagung über die Regelungstheorie, Mathematisches Forschungsinstitut, Oberwolfach 196.
[14] Hrušák J., Černý V.: Non-linear and signal energy optimal asymptotic filter design. J. Systemics, Cybernetics and Informatics 1 (2003), 55–62
[15] Keller H.: Non-linear observer design by transformation into a generalized observer canonical form. Internat. J. Control 46 (1987), 1915–1930 | DOI | MR
[16] Krener A. J., Isidori A.: Linearization by output injection and nonlinear observers. Systems Control Lett. 3 (1983), 47–52 | MR | Zbl
[17] Krener A. J., Respondek W.: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 197–216 | DOI | MR | Zbl
[18] Morales V. L., Plestan, F., Glumineau A.: Linearization by completely generalized input-output injection. Kybernetika 35 (1999), 793–802 | MR
[19] Patel M. R., Fallside, F., Parks P. C.: A new proof of the Routh and Hurwitz criterion by the second method of Lyapunov with application to optimum transfer functions. IEEE Trans. Automat. Control 9 (1963), 319–322
[20] Plestan F., Glumineau A.: Linearization by generalized input-output injection. Systems Control Lett. 31 (1997), 115–128 | DOI | MR | Zbl
[21] Proychev T. Ph., Mishkov R. L.: Transformation of nonlinear systems in observer canonical form with reduced dependency on derivatives of the input. Automatica 29 (1993), 495–498 | DOI | MR | Zbl
[22] Rayleigh J. W.: The Theory of Sound. Dover Publications, New York 1945 | MR | Zbl
[23] Schwarz H. R.: Ein Verfahren zur Stabilitätsfrage bei Matrizen Eigenwertproblemen. Z. Angew. Math. Phys. 7 (1956), 473–500 | DOI | MR
[24] Willems J. C.: Dissipative dynamical systems. Part I: general theory. Arch. Rational Mech. Anal. 45 (1972), 321–351 | DOI | MR | Zbl
[25] Zeitz M.: Observability canonical (phase-variable) form for non-linear time-variable systems. Internat. J. Control 15 (1984), 949–958 | MR | Zbl
[26] Zhou K., Doyle J. C.: Essentials of Robust Control. Prentice Hall, NJ 1998 | Zbl