Keywords: linear systems; multivariable systems; feedback control; pole and zero placement problems
@article{KYB_2005_41_1_a2,
author = {Ruiz-Le\'on, Javier and Orozco, Jorge Luis and Begovich, Ofelia},
title = {Closed-loop structure of decouplable linear multivariable systems},
journal = {Kybernetika},
pages = {33--45},
year = {2005},
volume = {41},
number = {1},
mrnumber = {2130483},
zbl = {1249.93079},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a2/}
}
Ruiz-León, Javier; Orozco, Jorge Luis; Begovich, Ofelia. Closed-loop structure of decouplable linear multivariable systems. Kybernetika, Tome 41 (2005) no. 1, pp. 33-45. http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a2/
[1] Descusse J., Dion J. M.: On the structure at infinity of linear square decoupled systems. IEEE Trans. Automat. Control AC-27 (1982), 971–974 | DOI | MR | Zbl
[2] Falb P. L., Wolovich W. A.: Decoupling in the design and synthesis of multivariable control systems. IEEE Trans. Automat. Control AC-12 (1967), 651–659 | DOI
[3] Hautus M. L. J., Heymann M.: Linear feedback: An algebraic approach. SIAM J. Control Optim. 16 (1978), 83–105 | DOI | MR | Zbl
[4] Herrera A.: Static realization of dynamic precompensators. IEEE Trans. Automat. Control 37 (1992), 1391–1394 | DOI | MR | Zbl
[5] Kailath T.: Linear Systems. Prentice Hall, Englewood Cliffs, NJ 1980 | MR | Zbl
[6] Koussiouris T. G.: A frequency domain approach for the block decoupling problem II. Pole assignment while block decoupling a minimal system by state feedback and a constant non-singular input transformation and observability of the block decoupled system. Internat. J. Control 32 (1980), 443–464 | DOI | MR
[7] Kučera V., Zagalak P.: Fundamental theorem of state feedback for singular systems. Automatica 24 (1988), 653–658 | DOI | MR
[8] Kučera V., Zagalak P.: Constant solutions of polynomial equations. Internat. J. Control 53 (1991), 495–502 | DOI | MR
[9] MacFarlane A. G. J., Karcanias N.: Poles and zeros of linear multivariable systems: A survey of the algebraic, geometric and complex-variable theory. Internat. J. Control 24 (1976), 33–74 | DOI | MR | Zbl
[10] Martínez-García J. C., Malabre M.: The row by row decoupling problem with stability: A structural approach. IEEE Trans. Automat. Control 39 (1994), 2457–2460 | DOI | MR | Zbl
[11] Rosenbrock H. H.: State-Space and Multivariable Theory. Wiley, New York 1970 | MR | Zbl
[12] Ruiz-León J., Zagalak, P., Eldem V.: On the Morgan problem with stability. Kybernetika 32 (1996), 425–441 | MR
[13] Vardulakis A. I. G.: Linear Multivariable Control: Algebraic and Synthesis Methods. Wiley, New York 1991 | MR
[14] Wonham W. M., Morse A. S.: Decoupling and pole assignment in linear multivariable systems: A geometric approach. SIAM J. Control 8 (1970), 1–18 | DOI | MR | Zbl
[15] Zúñiga J.C., Ruiz-León, J., Henrion D.: Algorithm for decoupling and complete pole assignment of linear multivariable systems. In: Proc. European Control Conference ECC-2003, Cambridge 2003