Closed-loop structure of decouplable linear multivariable systems
Kybernetika, Tome 41 (2005) no. 1, pp. 33-45 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Considering a controllable, square, linear multivariable system, which is decouplable by static state feedback, we completely characterize in this paper the structure of the decoupled closed-loop system. The family of all attainable transfer function matrices for the decoupled closed-loop system is characterized, which also completely establishes all possible combinations of attainable finite pole and zero structures. The set of assignable poles as well as the set of fixed decoupling poles are determined, and decoupling is achieved avoiding unnecessary cancellations of invariant zeros. For a particular attainable decoupled closed-loop structure, it is shown how to find the corresponding state feedback, and it is proved that this feedback is unique if and only if the system is controllable.
Considering a controllable, square, linear multivariable system, which is decouplable by static state feedback, we completely characterize in this paper the structure of the decoupled closed-loop system. The family of all attainable transfer function matrices for the decoupled closed-loop system is characterized, which also completely establishes all possible combinations of attainable finite pole and zero structures. The set of assignable poles as well as the set of fixed decoupling poles are determined, and decoupling is achieved avoiding unnecessary cancellations of invariant zeros. For a particular attainable decoupled closed-loop structure, it is shown how to find the corresponding state feedback, and it is proved that this feedback is unique if and only if the system is controllable.
Classification : 93B11, 93B52, 93B55, 93C05, 93C35
Keywords: linear systems; multivariable systems; feedback control; pole and zero placement problems
@article{KYB_2005_41_1_a2,
     author = {Ruiz-Le\'on, Javier and Orozco, Jorge Luis and Begovich, Ofelia},
     title = {Closed-loop structure of decouplable linear multivariable systems},
     journal = {Kybernetika},
     pages = {33--45},
     year = {2005},
     volume = {41},
     number = {1},
     mrnumber = {2130483},
     zbl = {1249.93079},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a2/}
}
TY  - JOUR
AU  - Ruiz-León, Javier
AU  - Orozco, Jorge Luis
AU  - Begovich, Ofelia
TI  - Closed-loop structure of decouplable linear multivariable systems
JO  - Kybernetika
PY  - 2005
SP  - 33
EP  - 45
VL  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a2/
LA  - en
ID  - KYB_2005_41_1_a2
ER  - 
%0 Journal Article
%A Ruiz-León, Javier
%A Orozco, Jorge Luis
%A Begovich, Ofelia
%T Closed-loop structure of decouplable linear multivariable systems
%J Kybernetika
%D 2005
%P 33-45
%V 41
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a2/
%G en
%F KYB_2005_41_1_a2
Ruiz-León, Javier; Orozco, Jorge Luis; Begovich, Ofelia. Closed-loop structure of decouplable linear multivariable systems. Kybernetika, Tome 41 (2005) no. 1, pp. 33-45. http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a2/

[1] Descusse J., Dion J. M.: On the structure at infinity of linear square decoupled systems. IEEE Trans. Automat. Control AC-27 (1982), 971–974 | DOI | MR | Zbl

[2] Falb P. L., Wolovich W. A.: Decoupling in the design and synthesis of multivariable control systems. IEEE Trans. Automat. Control AC-12 (1967), 651–659 | DOI

[3] Hautus M. L. J., Heymann M.: Linear feedback: An algebraic approach. SIAM J. Control Optim. 16 (1978), 83–105 | DOI | MR | Zbl

[4] Herrera A.: Static realization of dynamic precompensators. IEEE Trans. Automat. Control 37 (1992), 1391–1394 | DOI | MR | Zbl

[5] Kailath T.: Linear Systems. Prentice Hall, Englewood Cliffs, NJ 1980 | MR | Zbl

[6] Koussiouris T. G.: A frequency domain approach for the block decoupling problem II. Pole assignment while block decoupling a minimal system by state feedback and a constant non-singular input transformation and observability of the block decoupled system. Internat. J. Control 32 (1980), 443–464 | DOI | MR

[7] Kučera V., Zagalak P.: Fundamental theorem of state feedback for singular systems. Automatica 24 (1988), 653–658 | DOI | MR

[8] Kučera V., Zagalak P.: Constant solutions of polynomial equations. Internat. J. Control 53 (1991), 495–502 | DOI | MR

[9] MacFarlane A. G. J., Karcanias N.: Poles and zeros of linear multivariable systems: A survey of the algebraic, geometric and complex-variable theory. Internat. J. Control 24 (1976), 33–74 | DOI | MR | Zbl

[10] Martínez-García J. C., Malabre M.: The row by row decoupling problem with stability: A structural approach. IEEE Trans. Automat. Control 39 (1994), 2457–2460 | DOI | MR | Zbl

[11] Rosenbrock H. H.: State-Space and Multivariable Theory. Wiley, New York 1970 | MR | Zbl

[12] Ruiz-León J., Zagalak, P., Eldem V.: On the Morgan problem with stability. Kybernetika 32 (1996), 425–441 | MR

[13] Vardulakis A. I. G.: Linear Multivariable Control: Algebraic and Synthesis Methods. Wiley, New York 1991 | MR

[14] Wonham W. M., Morse A. S.: Decoupling and pole assignment in linear multivariable systems: A geometric approach. SIAM J. Control 8 (1970), 1–18 | DOI | MR | Zbl

[15] Zúñiga J.C., Ruiz-León, J., Henrion D.: Algorithm for decoupling and complete pole assignment of linear multivariable systems. In: Proc. European Control Conference ECC-2003, Cambridge 2003