Keywords: perturbation analysis; canonical forms; feedback synthesis
@article{KYB_2005_41_1_a1,
author = {Konstantinov, Mihail M. and Petkov, Petko Hr. and Christov, Nicolai D.},
title = {The technique of splitting operators in perturbation control theory},
journal = {Kybernetika},
pages = {15--32},
year = {2005},
volume = {41},
number = {1},
mrnumber = {2130482},
zbl = {1249.93057},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a1/}
}
TY - JOUR AU - Konstantinov, Mihail M. AU - Petkov, Petko Hr. AU - Christov, Nicolai D. TI - The technique of splitting operators in perturbation control theory JO - Kybernetika PY - 2005 SP - 15 EP - 32 VL - 41 IS - 1 UR - http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a1/ LA - en ID - KYB_2005_41_1_a1 ER -
Konstantinov, Mihail M.; Petkov, Petko Hr.; Christov, Nicolai D. The technique of splitting operators in perturbation control theory. Kybernetika, Tome 41 (2005) no. 1, pp. 15-32. http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a1/
[1] Grebenikov E. A., Ryabov, Yu. A.: Constructive Methods for Analysis of Nonlinear Systems (in Russian). Nauka, Moscow 1979 | MR
[2] Hermann R., Martin C. L.: Application of algebraic geometry to systems theory. Part I. IEEE Trans. Automatic Control 22 (1977), 19–25 | DOI | MR
[3] Higham N. J.: Optimization by direct search in matrix computations. SIAM J. Matrix Anal. Appl. 14 (1993), 317–333 | DOI | MR | Zbl
[4] Kantorovich L. V., Akilov G. P.: Functional Analysis in Normed Spaces. Pergamon, New York 1964 | MR | Zbl
[5] Konstantinov M., Mehrmann, V., Petkov P.: Perturbation Analysis for the Hamiltonian Schur Form. Technical Report 98-17, Fakultät für Mathematik, TU-Chemnitz, Chemnitz 1998
[6] Konstantinov M. M., Petkov, P. Hr., Christov N. D.: Invariants and canonical forms for linear multivariable systems under the action of orthogonal transformation groups. Kybernetika 17 (1981), 413–424 | MR | Zbl
[7] Konstantinov M. M., Petkov, P. Hr., Christov N. D.: Nonlocal perturbation analysis of the Schur system of a matrix. SIAM J. Matrix Anal. Appl. 15 (1994), 383–392 | DOI | MR | Zbl
[8] Konstantinov M. M., Petkov, P. Hr., Christov N. D.: Sensitivity analysis of the feedback synthesis problem. IEEE Trans. Automatic Control 42 (1997), 568–573 | DOI | MR | Zbl
[9] Konstantinov M. M., Petkov P. Hr., Christov N. D., Gu D. W., Mehrmann V.: Sensitivity of Lyapunov equations. In: Advances in Intelligent Systems and Computer Science (N. E. Mastorakis, ed.). WSES Press, 1999, pp. 289–292
[10] Konstantinov M. M., Petkov P. Hr., Gu D. W., Postlethwaite I.: Perturbation Analysis in Finite Dimensional Spaces. Tech. Rep. 96–18, Engineering Department, Leicester University, Leicester 1996
[11] Konstantinov M. M., Petkov P. Hr., Gu D. W., Postlethwaite I.: Perturbation analysis of orthogonal canonical forms. Linear Algebra Appl. 251 (1997), 267–291 | MR | Zbl
[12] Ortega J., Rheinboldt W.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York 1970 | MR | Zbl
[13] Petkov P. Hr., Christov N. D., Konstantinov M. M.: A new approach to the perturbation analysis of linear control problems. Preprints 11th IFAC World Congr., Tallin 1990, pp. 311–316 | MR
[14] Petkov P. Hr., Christov N. D., Konstantinov M. M.: Computational Methods for Linear Control Systems. Prentice–Hall, New York 1991 | Zbl
[15] Petkov P. Hr., Christov N. D., Konstantinov M. M.: Sensitivity of orthogonal canonical forms for single-input systems. In: Proc. 22nd Spring Conference of UBM, Sofia 1992, pp. 66–73
[16] Petkov P. Hr., Christov N. D., Konstantinov M. M.: Perturbation analysis of orthogonal canonical forms and pole assignment for single-input systems. In: Proc. 2nd European Control Conference, Groningen 1993, pp. 1397–1400
[17] Petkov P. Hr., Christov N. D., Konstantinov M. M.: Perturbation controllability analysis of linear multivariable systems. Preprints 12th IFAC World Congress, Sydney 1993, pp. 491–494
[18] Sun J.-G.: On perturbation bounds for the QR factorization. Linear Algebra Appl. 215 (1995), 95–111 | MR | Zbl
[19] Sun J.-G.: Perturbation bounds for the generalized Schur decomposition. SIAM J. Matrix Anal. Appl. 16 (1995), 1328–1340 | DOI | MR | Zbl