Robust pole placement for second-order systems: an LMI approach
Kybernetika, Tome 41 (2005) no. 1, pp. 1-14 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Based on recently developed sufficient conditions for stability of polynomial matrices, an LMI technique is described to perform robust pole placement by proportional-derivative feedback on second-order linear systems affected by polytopic or norm-bounded uncertainty. As illustrated by several numerical examples, at the core of the approach is the choice of a nominal, or central quadratic polynomial matrix.
Based on recently developed sufficient conditions for stability of polynomial matrices, an LMI technique is described to perform robust pole placement by proportional-derivative feedback on second-order linear systems affected by polytopic or norm-bounded uncertainty. As illustrated by several numerical examples, at the core of the approach is the choice of a nominal, or central quadratic polynomial matrix.
Classification : 62A10, 62F15, 93B35, 93B55, 93D09, 93E12
Keywords: polynomial matrix; second-order linear systems; LMI; pole placement; robust control
@article{KYB_2005_41_1_a0,
     author = {Henrion, Didier and \v{S}ebek, Michael and Ku\v{c}era, Vladim{\'\i}r},
     title = {Robust pole placement for second-order systems: an {LMI} approach},
     journal = {Kybernetika},
     pages = {1--14},
     year = {2005},
     volume = {41},
     number = {1},
     mrnumber = {2130481},
     zbl = {1249.93169},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a0/}
}
TY  - JOUR
AU  - Henrion, Didier
AU  - Šebek, Michael
AU  - Kučera, Vladimír
TI  - Robust pole placement for second-order systems: an LMI approach
JO  - Kybernetika
PY  - 2005
SP  - 1
EP  - 14
VL  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a0/
LA  - en
ID  - KYB_2005_41_1_a0
ER  - 
%0 Journal Article
%A Henrion, Didier
%A Šebek, Michael
%A Kučera, Vladimír
%T Robust pole placement for second-order systems: an LMI approach
%J Kybernetika
%D 2005
%P 1-14
%V 41
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a0/
%G en
%F KYB_2005_41_1_a0
Henrion, Didier; Šebek, Michael; Kučera, Vladimír. Robust pole placement for second-order systems: an LMI approach. Kybernetika, Tome 41 (2005) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a0/

[1] Ackermann J.: Robust Control. Systems with Uncertain Physical Parameters. Springer Verlag, Berlin 1993 | MR | Zbl

[2] Barb F. D., Ben-Tal, A., Nemirovski A.: Robust dissipativity of interval uncertain systems. SIAM J. Control Optim. 41 (2002), 6, 1661–1695 | DOI

[3] Bernussou J., Peres P. L. D., Geromel J. C.: A linear programming oriented procedure for quadratic stabilization of uncertain systems. Systems Control Lett. 13 (1989) 65–72 | DOI | MR | Zbl

[4] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, Philadelphia, Pennsylvania 1994 | MR | Zbl

[5] Chilali M., Gahinet P.: $H_{\infty }$ design with pole placement constraints: An LMI approach. IEEE Trans. Automat. Control 41 (1996), 3, 358–367 | DOI | MR

[6] Chu E. K., Datta B. N.: Numerically robust pole assignment for second-order systems. Internat. J. Control 64 (1996), 1113–1127 | DOI | MR | Zbl

[7] Datta B. N., Elhay, S., Ram Y. M.: Orthogonality and partial pole assignment for the symmetric definite quadratic pencil. Linear Algebra Appl. 257 (1997), 29–48, 1997 | MR | Zbl

[8] Diwekar A. M., Yedavalli R. K.: Stability of matrix second-order systems: new conditions and perspectives. IEEE Trans. Automat. Control 44 (1999), 9, 1773–1777 | DOI | MR | Zbl

[9] Duan G. R., Liu G. P.: Complete parametric approach for eigenstructure assignment in a class of second-order linear systems. Automatica 38 (2002), 4, 725–729 | DOI | MR | Zbl

[10] Ghaoui L. El, Oustry, F., Lebret H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9 (1998), 1, 33–52 | DOI | MR | Zbl

[11] Genin Y., Nesterov, Y., Dooren P. Van: Optimization over Positive Polynomial Matrices. In: Proc. Internat. Symposium on Mathematical Theory of Networks and Systems, Perpignan 2000

[12] Henrion D., Arzelier, D., Peaucelle D.: Positive polynomial matrices and improved LMI robustness conditions. Automatica 39 (2003), 8, 1479–1485 | MR | Zbl

[13] Henrion D., Arzelier D., Peaucelle, D., Šebek M.: An LMI condition for robust stability of polynomial matrix polytopes. Automatica 37 (2001), 3, 461–468 | DOI | MR | Zbl

[14] Henrion D., Bachelier, O., Šebek M.: D-stability of polynomial matrices. Internat. J. Control 74 (2001), 8, 845–856 | MR | Zbl

[15] Inman D. J., Kress A.: Eigenstructure assignment using inverse eigenvalue methods. AIAA J. Guidance, Control and Dynamics 18 (1995), 3, 625–627 | DOI

[16] Nichols N. K., Kautsky J.: Robust eigenstructure assignment in quadratic matrix polynomials: nonsingular case. SIAM J. Matrix Analysis Appl. 23 (2001), 1, 77–102 | DOI | MR | Zbl

[17] Oliveira M. C. de, Bernussou, J., Geromel J. C.: A new discrete-time robust stability condition. Systems Control Lett. 37 (1999), 261–265 | DOI | MR | Zbl

[18] Peaucelle D., Arzelier D., Bachelier, O., Bernussou J.: A new robust D-stability condition for real convex polytopic uncertainty. Systems Control Lett. 40 (2000), 21–30 | DOI | MR | Zbl

[19] Peaucelle D., Henrion, D., Labit Y.: SeDuMi Interface: A user-friendly free Matlab package for defining LMI problems. In: Proc. IEEE Conference on Computer-Aided Control System Design, Glasgow 2002

[21] Skelton R. E., Iwasaki, T., Grigoriadis K.: A Unified Algebraic Approach to Linear Control Design. Taylor and Francis, London 1998 | MR

[23] Tisseur F., Higham N. J.: Structured pseudospectra for polynomial eigenvalue problems, with applications. SIAM J. Matrix Analysis Appl. 23 (2001), 1, 187–208 | DOI | MR | Zbl

[24] Tisseur F., Meerbergen K.: The quadratic eigenvalue problem. SIAM Rev. 43 (2001), 2, 235–286 | DOI | MR | Zbl