Keywords: polynomial matrix; second-order linear systems; LMI; pole placement; robust control
@article{KYB_2005_41_1_a0,
author = {Henrion, Didier and \v{S}ebek, Michael and Ku\v{c}era, Vladim{\'\i}r},
title = {Robust pole placement for second-order systems: an {LMI} approach},
journal = {Kybernetika},
pages = {1--14},
year = {2005},
volume = {41},
number = {1},
mrnumber = {2130481},
zbl = {1249.93169},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a0/}
}
Henrion, Didier; Šebek, Michael; Kučera, Vladimír. Robust pole placement for second-order systems: an LMI approach. Kybernetika, Tome 41 (2005) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/KYB_2005_41_1_a0/
[1] Ackermann J.: Robust Control. Systems with Uncertain Physical Parameters. Springer Verlag, Berlin 1993 | MR | Zbl
[2] Barb F. D., Ben-Tal, A., Nemirovski A.: Robust dissipativity of interval uncertain systems. SIAM J. Control Optim. 41 (2002), 6, 1661–1695 | DOI
[3] Bernussou J., Peres P. L. D., Geromel J. C.: A linear programming oriented procedure for quadratic stabilization of uncertain systems. Systems Control Lett. 13 (1989) 65–72 | DOI | MR | Zbl
[4] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, Philadelphia, Pennsylvania 1994 | MR | Zbl
[5] Chilali M., Gahinet P.: $H_{\infty }$ design with pole placement constraints: An LMI approach. IEEE Trans. Automat. Control 41 (1996), 3, 358–367 | DOI | MR
[6] Chu E. K., Datta B. N.: Numerically robust pole assignment for second-order systems. Internat. J. Control 64 (1996), 1113–1127 | DOI | MR | Zbl
[7] Datta B. N., Elhay, S., Ram Y. M.: Orthogonality and partial pole assignment for the symmetric definite quadratic pencil. Linear Algebra Appl. 257 (1997), 29–48, 1997 | MR | Zbl
[8] Diwekar A. M., Yedavalli R. K.: Stability of matrix second-order systems: new conditions and perspectives. IEEE Trans. Automat. Control 44 (1999), 9, 1773–1777 | DOI | MR | Zbl
[9] Duan G. R., Liu G. P.: Complete parametric approach for eigenstructure assignment in a class of second-order linear systems. Automatica 38 (2002), 4, 725–729 | DOI | MR | Zbl
[10] Ghaoui L. El, Oustry, F., Lebret H.: Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9 (1998), 1, 33–52 | DOI | MR | Zbl
[11] Genin Y., Nesterov, Y., Dooren P. Van: Optimization over Positive Polynomial Matrices. In: Proc. Internat. Symposium on Mathematical Theory of Networks and Systems, Perpignan 2000
[12] Henrion D., Arzelier, D., Peaucelle D.: Positive polynomial matrices and improved LMI robustness conditions. Automatica 39 (2003), 8, 1479–1485 | MR | Zbl
[13] Henrion D., Arzelier D., Peaucelle, D., Šebek M.: An LMI condition for robust stability of polynomial matrix polytopes. Automatica 37 (2001), 3, 461–468 | DOI | MR | Zbl
[14] Henrion D., Bachelier, O., Šebek M.: D-stability of polynomial matrices. Internat. J. Control 74 (2001), 8, 845–856 | MR | Zbl
[15] Inman D. J., Kress A.: Eigenstructure assignment using inverse eigenvalue methods. AIAA J. Guidance, Control and Dynamics 18 (1995), 3, 625–627 | DOI
[16] Nichols N. K., Kautsky J.: Robust eigenstructure assignment in quadratic matrix polynomials: nonsingular case. SIAM J. Matrix Analysis Appl. 23 (2001), 1, 77–102 | DOI | MR | Zbl
[17] Oliveira M. C. de, Bernussou, J., Geromel J. C.: A new discrete-time robust stability condition. Systems Control Lett. 37 (1999), 261–265 | DOI | MR | Zbl
[18] Peaucelle D., Arzelier D., Bachelier, O., Bernussou J.: A new robust D-stability condition for real convex polytopic uncertainty. Systems Control Lett. 40 (2000), 21–30 | DOI | MR | Zbl
[19] Peaucelle D., Henrion, D., Labit Y.: SeDuMi Interface: A user-friendly free Matlab package for defining LMI problems. In: Proc. IEEE Conference on Computer-Aided Control System Design, Glasgow 2002
[21] Skelton R. E., Iwasaki, T., Grigoriadis K.: A Unified Algebraic Approach to Linear Control Design. Taylor and Francis, London 1998 | MR
[23] Tisseur F., Higham N. J.: Structured pseudospectra for polynomial eigenvalue problems, with applications. SIAM J. Matrix Analysis Appl. 23 (2001), 1, 187–208 | DOI | MR | Zbl
[24] Tisseur F., Meerbergen K.: The quadratic eigenvalue problem. SIAM Rev. 43 (2001), 2, 235–286 | DOI | MR | Zbl