Keywords: canonical analysis; restricted minimum $\phi $-divergence estimator; minimum $\phi $-divergence statistic; simulation; power divergence
@article{KYB_2004_40_6_a8,
author = {Pardo, J. A. and Pardo, L. and Pardo, M. C. and Zografos, K.},
title = {An exploratory canonical analysis approach for multinomial populations based on the $\phi$-divergence measure},
journal = {Kybernetika},
pages = {757--776},
year = {2004},
volume = {40},
number = {6},
mrnumber = {2120396},
zbl = {1245.62003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a8/}
}
TY - JOUR AU - Pardo, J. A. AU - Pardo, L. AU - Pardo, M. C. AU - Zografos, K. TI - An exploratory canonical analysis approach for multinomial populations based on the $\phi$-divergence measure JO - Kybernetika PY - 2004 SP - 757 EP - 776 VL - 40 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a8/ LA - en ID - KYB_2004_40_6_a8 ER -
%0 Journal Article %A Pardo, J. A. %A Pardo, L. %A Pardo, M. C. %A Zografos, K. %T An exploratory canonical analysis approach for multinomial populations based on the $\phi$-divergence measure %J Kybernetika %D 2004 %P 757-776 %V 40 %N 6 %U http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a8/ %G en %F KYB_2004_40_6_a8
Pardo, J. A.; Pardo, L.; Pardo, M. C.; Zografos, K. An exploratory canonical analysis approach for multinomial populations based on the $\phi$-divergence measure. Kybernetika, Tome 40 (2004) no. 6, pp. 757-776. http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a8/
[1] Aitchison J., Silvey S. D.: Maximum-likelihood estimation of parameters subject to constraints. Ann. Math. Statist. 29 (1958), 813–828 | DOI | MR
[2] Ali S. M., Silvey S. D.: A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Ser. B 26 (1966), 131–142 | MR | Zbl
[3] Anderson E. B. A.: The Statistical Analysis of Categorical Data. Springer-Verlag, Berlin 1990
[4] Basu A., Basu S.: Penalized minimum disparity methods in multinomials models. Statistica Sinica 8 (1998), 841–860 | MR | Zbl
[5] Basu A., Lindsay B. G.: Minimum disparity estimation for continuous models. Ann. Inst. Statist. Math. 46 (1994), 683–705 | DOI | MR | Zbl
[6] Basu A., Sarkar S.: Minimum disparity estimation in the errors-invariables model. Statist. Probab. Lett. 20 (1994), 69–73 | DOI | MR
[7] Basu A., Sarkar S.: The trade-off between robustness and efficiency and the effect of model smoothing. J. Statist. Comput. Simul. 50 (1994), 173–185 | DOI
[8] Benzecri J. P.: L’Analyse des Données. Tome 2: L’Analyse des Correspondances. Dunod, Paris 1973 | Zbl
[9] Birch M. W.: A new proof of the Pearson–Fisher theorem. Ann. Math. Statist. 35 (1964), 817–824 | DOI | MR | Zbl
[10] Cressie N. A. C., Pardo L.: Minimum $\phi $-divergence estimator and hierarchical testing in loglinear models. Statistica Sinica 10 (2000), 867–884 | MR | Zbl
[11] Cressie N. A. C., Pardo L.: Model checking in loglinear models using $\phi $-divergences and MLEs. J. Statist. Plann. Inference 103 (2002), 437–453 | DOI | MR | Zbl
[12] Cressie N. A. C., Read T. R. C.: Multinomial goodness-of-fit tests. J. Roy. Statist. Soc. Ser. B 46 (1984), 440–464 | MR | Zbl
[13] Crichton N. J., Hinde J. P.: Correspondence analysis as a screening method for indicants for clinical diagnosis. Statistics in Medicine 8 (1989), 1351–1362 | DOI
[14] Csiszár I.: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität on Markhoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 85–108 | MR
[15] Dahdouh B., Durantan J. F., Lecoq M.: Analyse des donnée sur l’ecologie des acridients d’Afrique de lóuest. Cahiers de l’ Analyse des Données 3 (1978), 459–482
[16] Fasham M. J. R.: A comparison of nonmetric multidimensional scaling, principal components averaging for the ordination of simulated coenocicles, and coenoplanes. Ecology 58 (1977), 551–561 | DOI
[17] Gilula Z., Haberman J.: Canonical Analysis of Contingency Tables by Maximum Likelihood. J. Amer. Statist. Assoc. 81 (1986), 395, 780–788 | DOI | MR | Zbl
[18] Greenacre M. J.: Theory and Applications of Correspondence Analysis. Academic Press, New York 1984 | MR | Zbl
[19] Greenacre M.: Correspondence analysis in medical research. Statist. Meth. Medic. Res. 1 (1992), 97–117 | DOI
[20] Greenacre M. J.: Correspondence Analysis in Practice. Academic Press, London 1993 | Zbl
[21] Greenacre M. J.: Correspondence Analysis of the Spanish National Health Survey. Department of Economics and Business, Universitat Pompeu Fabra, Barcelona 2002
[22] Lancaster H. O.: The Chi-squared Distribution. Wiley, New York 1969 | MR | Zbl
[23] Lebart L., Morineau, A., Warwick K.: Multivariate Descriptive Statistical Analysis. Wiley, New York 1984 | MR | Zbl
[24] Lindsay B. G.: Efficiency versus robustness. The case for minimum Hellinger distance and other methods. Ann. Statist. 22 (1994), 1081–1114 | DOI | MR | Zbl
[25] Matthews G. B., Crowther N. A. S.: A maximum likelihood estimation procedure when modelling categorical data in terms of cross-product ratios. South African Statist. J. 31 (1997), 161–184 | MR | Zbl
[26] Matthews G. B., Crowther N. A. S.: A maximum likelihood estimation procedures when modeling in terms of constraints. South African Statist. J. 29 (1995), 29–50 | MR
[27] Morales D., Pardo, L., Vajda I.: Asymptotic divergence of estimates of discrete distributions. J. Statist. Plann. Inference 48 (1995), 347–369 | DOI | MR | Zbl
[28] Parr W. C.: Minimum distance estimation: a bibliography. Comm. Statist. Theory Methods 10 (1981), 1205–1224 | DOI | MR | Zbl
[29] Pardo J. A., Pardo, L., Zografos K.: Minimum $\phi $-divergence estimators with constraints in multinomial populations. J. Statist. Plann. Inference 104 (2002), 221–237 | DOI | MR | Zbl
[30] Read T. R. C., Cressie N. A. C.: Goodness-of-fit Statistics for Discrete Multivariate Data. Springer, New York 1988 | MR | Zbl
[31] Srole L., Langner T. S., Michael S. T., Opler M. K., Reannie T. A. C.: Mental Health in the Metropolis: The Midtown Manhattan Study. McGraw-Hill, New York 1962
[32] Wolfowitz J.: Estimation by minimum distance method. Ann. Inst. Statist. Math. 5 (1953), 9–23 | DOI | MR