Bound on extended $f$-divergences for a variety of classes
Kybernetika, Tome 40 (2004) no. 6, pp. 745-756 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The concept of $f$-divergences was introduced by Csiszár in 1963 as measures of the ‘hardness’ of a testing problem depending on a convex real valued function $f$ on the interval $[0,\infty )$. The choice of this parameter $f$ can be adjusted so as to match the needs for specific applications. The definition and some of the most basic properties of $f$-divergences are given and the class of $\chi ^{\alpha }$-divergences is presented. Ostrowski’s inequality and a Trapezoid inequality are utilized in order to prove bounds for an extension of the set of $f$-divergences. The class of $\chi ^{\alpha }$-divergences and four further classes of $f$-divergences are used in order to investigate limitations and strengths of the inequalities derived.
The concept of $f$-divergences was introduced by Csiszár in 1963 as measures of the ‘hardness’ of a testing problem depending on a convex real valued function $f$ on the interval $[0,\infty )$. The choice of this parameter $f$ can be adjusted so as to match the needs for specific applications. The definition and some of the most basic properties of $f$-divergences are given and the class of $\chi ^{\alpha }$-divergences is presented. Ostrowski’s inequality and a Trapezoid inequality are utilized in order to prove bounds for an extension of the set of $f$-divergences. The class of $\chi ^{\alpha }$-divergences and four further classes of $f$-divergences are used in order to investigate limitations and strengths of the inequalities derived.
Classification : 62B10, 62E99, 94A17
Keywords: $f$-divergences; bounds; Ostrowki’s inequality
@article{KYB_2004_40_6_a7,
     author = {Cerone, Pietro and Dragomir, Sever S. and \"Osterreicher, Ferdinand},
     title = {Bound on extended $f$-divergences for a variety of classes},
     journal = {Kybernetika},
     pages = {745--756},
     year = {2004},
     volume = {40},
     number = {6},
     mrnumber = {2120395},
     zbl = {1244.62005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a7/}
}
TY  - JOUR
AU  - Cerone, Pietro
AU  - Dragomir, Sever S.
AU  - Österreicher, Ferdinand
TI  - Bound on extended $f$-divergences for a variety of classes
JO  - Kybernetika
PY  - 2004
SP  - 745
EP  - 756
VL  - 40
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a7/
LA  - en
ID  - KYB_2004_40_6_a7
ER  - 
%0 Journal Article
%A Cerone, Pietro
%A Dragomir, Sever S.
%A Österreicher, Ferdinand
%T Bound on extended $f$-divergences for a variety of classes
%J Kybernetika
%D 2004
%P 745-756
%V 40
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a7/
%G en
%F KYB_2004_40_6_a7
Cerone, Pietro; Dragomir, Sever S.; Österreicher, Ferdinand. Bound on extended $f$-divergences for a variety of classes. Kybernetika, Tome 40 (2004) no. 6, pp. 745-756. http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a7/

[1] Cerone P., Dragomir S. S., Pearce C. E. M.: A generalized trapezoid inequality for functions of bounded variation. Turkish J. Math. 24 (2000), 2, 147–163 | MR | Zbl

[2] Csiszár I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 85–107 | MR

[3] Dragomir S. S.: On the Ostrowski’s inequalities for mappings with bounded variation and applications. Math. Inequ. Appl. 4 (2001), 1, 59–66 | MR

[4] Dragomir S. S., Gluscević, V., Pearce C. M. E.: Csiszár $f$-divergences, Ostrowski’s inequality and mutual information. Nonlinear Anal. 47 (2001), 4, 2375–2386 | DOI | MR

[5] Kafka P., Österreicher, F., Vincze I.: On powers of $f$-divergences defining a distance. Studia Sci. Math. Hungar. 26 (1991), 415–422 | MR | Zbl

[6] Liese F., Vajda I.: Convex Statistical Distances. (Teubner–Texte zur Mathematik, Band 95.) Teubner, Leipzig 1987 | MR | Zbl

[7] Menéndez M., Morales D., Pardo, L., Vajda I.: Two approaches to grouping of data and related disparity statistics. Comm. Statist. Theory Methods 27 (1998), 3, 609–633 | DOI | MR | Zbl

[8] Österreicher F., Vajda I.: A new class of metric divergences on probability spaces and its applicability in statistics. Ann. Inst. Statist. Math. 55 (2003), 3, 639–653 | DOI | MR | Zbl

[9] Puri M. L., Vincze I.: Measures of information and contiguity. Statist. Probab. Lett. 9 (1990), 223–228 | DOI | MR

[10] Wegenkittl S.: Entropy estimators and serial tests for ergodic chains. IEEE Trans. Inform. Theory 47 (2001), 6, 2480–2489 | DOI | MR | Zbl

[11] Wegenkittl S.: A generalized $\phi $-divergence for asymptotically multivariate normal models. J. Multivariate Anal. 83 (2002), 288–302 | DOI | MR