Keywords: $f$-divergences; bounds; Ostrowki’s inequality
@article{KYB_2004_40_6_a7,
author = {Cerone, Pietro and Dragomir, Sever S. and \"Osterreicher, Ferdinand},
title = {Bound on extended $f$-divergences for a variety of classes},
journal = {Kybernetika},
pages = {745--756},
year = {2004},
volume = {40},
number = {6},
mrnumber = {2120395},
zbl = {1244.62005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a7/}
}
Cerone, Pietro; Dragomir, Sever S.; Österreicher, Ferdinand. Bound on extended $f$-divergences for a variety of classes. Kybernetika, Tome 40 (2004) no. 6, pp. 745-756. http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a7/
[1] Cerone P., Dragomir S. S., Pearce C. E. M.: A generalized trapezoid inequality for functions of bounded variation. Turkish J. Math. 24 (2000), 2, 147–163 | MR | Zbl
[2] Csiszár I.: Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 85–107 | MR
[3] Dragomir S. S.: On the Ostrowski’s inequalities for mappings with bounded variation and applications. Math. Inequ. Appl. 4 (2001), 1, 59–66 | MR
[4] Dragomir S. S., Gluscević, V., Pearce C. M. E.: Csiszár $f$-divergences, Ostrowski’s inequality and mutual information. Nonlinear Anal. 47 (2001), 4, 2375–2386 | DOI | MR
[5] Kafka P., Österreicher, F., Vincze I.: On powers of $f$-divergences defining a distance. Studia Sci. Math. Hungar. 26 (1991), 415–422 | MR | Zbl
[6] Liese F., Vajda I.: Convex Statistical Distances. (Teubner–Texte zur Mathematik, Band 95.) Teubner, Leipzig 1987 | MR | Zbl
[7] Menéndez M., Morales D., Pardo, L., Vajda I.: Two approaches to grouping of data and related disparity statistics. Comm. Statist. Theory Methods 27 (1998), 3, 609–633 | DOI | MR | Zbl
[8] Österreicher F., Vajda I.: A new class of metric divergences on probability spaces and its applicability in statistics. Ann. Inst. Statist. Math. 55 (2003), 3, 639–653 | DOI | MR | Zbl
[9] Puri M. L., Vincze I.: Measures of information and contiguity. Statist. Probab. Lett. 9 (1990), 223–228 | DOI | MR
[10] Wegenkittl S.: Entropy estimators and serial tests for ergodic chains. IEEE Trans. Inform. Theory 47 (2001), 6, 2480–2489 | DOI | MR | Zbl
[11] Wegenkittl S.: A generalized $\phi $-divergence for asymptotically multivariate normal models. J. Multivariate Anal. 83 (2002), 288–302 | DOI | MR