Exact and approximate distributions for the product of Dirichlet components
Kybernetika, Tome 40 (2004) no. 6, pp. 735-744 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is well known that $X/(X + Y)$ has the beta distribution when $X$ and $Y$ follow the Dirichlet distribution. Linear combinations of the form $\alpha X + \beta Y$ have also been studied in Provost and Cheong [S. B. Provost and Y.-H. Cheong: On the distribution of linear combinations of the components of a Dirichlet random vector. Canad. J. Statist. 28 (2000)]. In this paper, we derive the exact distribution of the product $P = X Y$ (involving the Gauss hypergeometric function) and the corresponding moment properties. We also propose an approximation and show evidence to prove its robustness. This approximation will be useful especially to the practitioners of the Dirichlet distribution.
It is well known that $X/(X + Y)$ has the beta distribution when $X$ and $Y$ follow the Dirichlet distribution. Linear combinations of the form $\alpha X + \beta Y$ have also been studied in Provost and Cheong [S. B. Provost and Y.-H. Cheong: On the distribution of linear combinations of the components of a Dirichlet random vector. Canad. J. Statist. 28 (2000)]. In this paper, we derive the exact distribution of the product $P = X Y$ (involving the Gauss hypergeometric function) and the corresponding moment properties. We also propose an approximation and show evidence to prove its robustness. This approximation will be useful especially to the practitioners of the Dirichlet distribution.
Classification : 33C90, 62E15, 62E17, 62E99
Keywords: approximation; Dirichlet distribution; Gauss hypergeometric function
@article{KYB_2004_40_6_a6,
     author = {Nadarajah, Saralees and Kotz, Samuel},
     title = {Exact and approximate distributions for the product of {Dirichlet} components},
     journal = {Kybernetika},
     pages = {735--744},
     year = {2004},
     volume = {40},
     number = {6},
     mrnumber = {2120394},
     zbl = {1249.33013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a6/}
}
TY  - JOUR
AU  - Nadarajah, Saralees
AU  - Kotz, Samuel
TI  - Exact and approximate distributions for the product of Dirichlet components
JO  - Kybernetika
PY  - 2004
SP  - 735
EP  - 744
VL  - 40
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a6/
LA  - en
ID  - KYB_2004_40_6_a6
ER  - 
%0 Journal Article
%A Nadarajah, Saralees
%A Kotz, Samuel
%T Exact and approximate distributions for the product of Dirichlet components
%J Kybernetika
%D 2004
%P 735-744
%V 40
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a6/
%G en
%F KYB_2004_40_6_a6
Nadarajah, Saralees; Kotz, Samuel. Exact and approximate distributions for the product of Dirichlet components. Kybernetika, Tome 40 (2004) no. 6, pp. 735-744. http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a6/

[1] Chapman D. G.: Some two-sample tests. Ann. Math. Statist. 21 (1950), 601–606 | DOI | MR | Zbl

[2] Chaubey Y. P., Talukder A. B. M., Enayet, Nur: Exact moments of a ratio of two positive quadratic forms in normal variables. Comm. Statist. – Theory Methods 12 (1983), 675–679 | DOI | MR | Zbl

[3] Dobson A. J., Kulasmaa, K., Scherer J.: Confidence intervals for weighted sums of Poisson parameters. Statist. Medicine 10 (1991), 457–462 | DOI

[4] Fan D.-Y.: The distribution of the product of independent beta variables. Comm. Statist. – Theory Methods 20 (1991), 4043–4052 | DOI | MR

[5] Gradshteyn I. S., Ryzhik I. M.: Table of Integrals, Series, and Products. Sixth edition. Academic Press, San Diego 2000 | MR | Zbl

[6] Grice J. V., Bain L. J.: Inferences concerning the mean of the gamma distribution. J. Amer. Statist. Assoc. 75 (1980), 929–933 | DOI | MR | Zbl

[7] Gupta A. K., Nadarajah S.: Handbook of Beta Distribution and Its Applications. Marcel Dekker, New York 2004 | MR | Zbl

[8] Jackson O. A. Y.: Fitting a gamma or log-normal distribution to fibre-diameter measurements on wool tops. Appl. Statist. 18 (1969), 70–75 | DOI

[9] Johannesson N., Giri N.: On approximations involving the beta distribution. Comm. Statist. – Simulation Computation 24 (1995), 489–503 | DOI | MR | Zbl

[10] Kamgar-Parsi B., Kamgar-Parsi, B., Brosh M.: Distribution and moments of weighted sum of uniform random variables with applications in reducing Monte Carlo simulations. J. Statist. Comput. Simulation 52 (1995), 399–414 | DOI

[11] Kimball C. V., Scheibner D. J.: Error bars for sonic slowness measurements. Geophysics 63 (1998), 345–353 | DOI

[12] Kotz S., Balakrishnan, N., Johnson N. L.: Continuous Multivariate Distributions. Volume 1: Models and Applications. Second edition. Wiley, New York 2000 | MR | Zbl

[13] Lai T. L.: Control charts based on weighted sums. Ann. Statist. 2 (1974), 134–147 | DOI | MR | Zbl

[14] Linhart H.: Approximate confidence limits for the coefficient of variation of gamma distributions. Biometrics 21 (1965), 733–738 | DOI | MR

[15] Lowan A. N., Laderman J.: On the distribution of errors in $n$th tabular differences. Ann. Math. Statist. 10 (1939), 360–364 | DOI | MR | Zbl

[16] Malik H. J.: The distribution of the product of two noncentral beta variates. Naval Res. Logist. Quart. 17 (1970), 327–330 | DOI | Zbl

[17] Mikhail N. N., Tracy D. S.: The exact non-null distribution of Wilk’s $\Lambda $ criterion in the bivariate collinear case. Canad. Math. Bull. 17 (1975), 757–758 | DOI | MR

[18] Monti K. L., Sen P. K.: The locally optimal combination of independent test statistics. J. Amer. Statist. Assoc. 71 (1976), 903–911 | DOI | MR

[19] Pham-Gia T.: Distributions of the ratios of independent beta variables and applications. Comm. Statist. – Theory Methods 29 (2000), 2693–2715 | DOI | MR | Zbl

[20] Pham-Gia T., Turkkan N.: Bayesian analysis of the difference of two proportions. Comm. Statist. – Theory Methods 22 (1993), 1755–1771 | DOI | MR | Zbl

[21] Pham-Gia T., Turkkan N.: Reliability of a standby system with beta component lifelength. IEEE Trans. Reliability (1994), 71–75 | DOI

[22] Pham-Gia, T., Turkkan N.: Distribution of the linear combination of two general beta variables and applications. Comm. Statist. – Theory Methods 27 (1998), 1851–1869 | DOI | MR | Zbl

[23] Pham-Gia T., Turkkan N.: The product and quotient of general beta distributions. Statist. Papers 43 (2002) , 537–550 | DOI | MR | Zbl

[24] Provost S. B., Cheong Y.-H.: On the distribution of linear combinations of the components of a Dirichlet random vector. Canad. J. Statist. 28 (2000), 417–425 | DOI | MR | Zbl

[25] Provost S. B., Rudiuk E. M.: The exact density function of the ratio of two dependent linear combinations of chi-square variables. Ann. Inst. Statist. Math. 46 (1994), 557–571 | MR | Zbl

[26] Prudnikov A. P., Brychkov Y. A., Marichev O. I.: Integrals and Series. Volumes 1, 2 and 3. Gordon and Breach Science Publishers, Amsterdam 1986 | Zbl

[27] Rousseau B., Ennis D. M.: A Thurstonian model for the dual pair (4IAX) discrimination method. Perception & Psychophysics 63 (2001), 1083–1090 | DOI

[28] Sculli D., Wong K. L.: The maximum and sum of two beta variables in the analysis of PERT networks. Omega Internat. J. Manag. Sci. 13 (1985), 233–240 | DOI

[29] Stein C.: A two-sample test for a linear hypothesis whose power is independent of the variance. Ann. Math. Statist. 16 (1945), 243–258 | DOI | MR | Zbl

[30] Toyoda T., Ohtani K.: Testing equality between sets of coefficients after a preliminary test for equality of disturbance variances in two linear regressions. J. Econometrics 31 (1986), 67–80 | DOI | MR

[31] Neumann J. von: Distribution of the ratio of the mean square successive difference to the variance. Ann. Math. Statist. 12 (1941), 367–395 | DOI | MR

[32] Witkovský V.: Computing the distribution of a linear combination of inverted gamma variables. Kybernetika 37 (2001), 79–90 | MR

[33] Yatchew A. J.: Multivariate distributions involving ratios of normal variables. Comm. Statist. – Theory Methods 15 (1986), 1905–1926 | DOI | MR | Zbl