Keywords: approximation; Dirichlet distribution; Gauss hypergeometric function
@article{KYB_2004_40_6_a6,
author = {Nadarajah, Saralees and Kotz, Samuel},
title = {Exact and approximate distributions for the product of {Dirichlet} components},
journal = {Kybernetika},
pages = {735--744},
year = {2004},
volume = {40},
number = {6},
mrnumber = {2120394},
zbl = {1249.33013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a6/}
}
Nadarajah, Saralees; Kotz, Samuel. Exact and approximate distributions for the product of Dirichlet components. Kybernetika, Tome 40 (2004) no. 6, pp. 735-744. http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a6/
[1] Chapman D. G.: Some two-sample tests. Ann. Math. Statist. 21 (1950), 601–606 | DOI | MR | Zbl
[2] Chaubey Y. P., Talukder A. B. M., Enayet, Nur: Exact moments of a ratio of two positive quadratic forms in normal variables. Comm. Statist. – Theory Methods 12 (1983), 675–679 | DOI | MR | Zbl
[3] Dobson A. J., Kulasmaa, K., Scherer J.: Confidence intervals for weighted sums of Poisson parameters. Statist. Medicine 10 (1991), 457–462 | DOI
[4] Fan D.-Y.: The distribution of the product of independent beta variables. Comm. Statist. – Theory Methods 20 (1991), 4043–4052 | DOI | MR
[5] Gradshteyn I. S., Ryzhik I. M.: Table of Integrals, Series, and Products. Sixth edition. Academic Press, San Diego 2000 | MR | Zbl
[6] Grice J. V., Bain L. J.: Inferences concerning the mean of the gamma distribution. J. Amer. Statist. Assoc. 75 (1980), 929–933 | DOI | MR | Zbl
[7] Gupta A. K., Nadarajah S.: Handbook of Beta Distribution and Its Applications. Marcel Dekker, New York 2004 | MR | Zbl
[8] Jackson O. A. Y.: Fitting a gamma or log-normal distribution to fibre-diameter measurements on wool tops. Appl. Statist. 18 (1969), 70–75 | DOI
[9] Johannesson N., Giri N.: On approximations involving the beta distribution. Comm. Statist. – Simulation Computation 24 (1995), 489–503 | DOI | MR | Zbl
[10] Kamgar-Parsi B., Kamgar-Parsi, B., Brosh M.: Distribution and moments of weighted sum of uniform random variables with applications in reducing Monte Carlo simulations. J. Statist. Comput. Simulation 52 (1995), 399–414 | DOI
[11] Kimball C. V., Scheibner D. J.: Error bars for sonic slowness measurements. Geophysics 63 (1998), 345–353 | DOI
[12] Kotz S., Balakrishnan, N., Johnson N. L.: Continuous Multivariate Distributions. Volume 1: Models and Applications. Second edition. Wiley, New York 2000 | MR | Zbl
[13] Lai T. L.: Control charts based on weighted sums. Ann. Statist. 2 (1974), 134–147 | DOI | MR | Zbl
[14] Linhart H.: Approximate confidence limits for the coefficient of variation of gamma distributions. Biometrics 21 (1965), 733–738 | DOI | MR
[15] Lowan A. N., Laderman J.: On the distribution of errors in $n$th tabular differences. Ann. Math. Statist. 10 (1939), 360–364 | DOI | MR | Zbl
[16] Malik H. J.: The distribution of the product of two noncentral beta variates. Naval Res. Logist. Quart. 17 (1970), 327–330 | DOI | Zbl
[17] Mikhail N. N., Tracy D. S.: The exact non-null distribution of Wilk’s $\Lambda $ criterion in the bivariate collinear case. Canad. Math. Bull. 17 (1975), 757–758 | DOI | MR
[18] Monti K. L., Sen P. K.: The locally optimal combination of independent test statistics. J. Amer. Statist. Assoc. 71 (1976), 903–911 | DOI | MR
[19] Pham-Gia T.: Distributions of the ratios of independent beta variables and applications. Comm. Statist. – Theory Methods 29 (2000), 2693–2715 | DOI | MR | Zbl
[20] Pham-Gia T., Turkkan N.: Bayesian analysis of the difference of two proportions. Comm. Statist. – Theory Methods 22 (1993), 1755–1771 | DOI | MR | Zbl
[21] Pham-Gia T., Turkkan N.: Reliability of a standby system with beta component lifelength. IEEE Trans. Reliability (1994), 71–75 | DOI
[22] Pham-Gia, T., Turkkan N.: Distribution of the linear combination of two general beta variables and applications. Comm. Statist. – Theory Methods 27 (1998), 1851–1869 | DOI | MR | Zbl
[23] Pham-Gia T., Turkkan N.: The product and quotient of general beta distributions. Statist. Papers 43 (2002) , 537–550 | DOI | MR | Zbl
[24] Provost S. B., Cheong Y.-H.: On the distribution of linear combinations of the components of a Dirichlet random vector. Canad. J. Statist. 28 (2000), 417–425 | DOI | MR | Zbl
[25] Provost S. B., Rudiuk E. M.: The exact density function of the ratio of two dependent linear combinations of chi-square variables. Ann. Inst. Statist. Math. 46 (1994), 557–571 | MR | Zbl
[26] Prudnikov A. P., Brychkov Y. A., Marichev O. I.: Integrals and Series. Volumes 1, 2 and 3. Gordon and Breach Science Publishers, Amsterdam 1986 | Zbl
[27] Rousseau B., Ennis D. M.: A Thurstonian model for the dual pair (4IAX) discrimination method. Perception & Psychophysics 63 (2001), 1083–1090 | DOI
[28] Sculli D., Wong K. L.: The maximum and sum of two beta variables in the analysis of PERT networks. Omega Internat. J. Manag. Sci. 13 (1985), 233–240 | DOI
[29] Stein C.: A two-sample test for a linear hypothesis whose power is independent of the variance. Ann. Math. Statist. 16 (1945), 243–258 | DOI | MR | Zbl
[30] Toyoda T., Ohtani K.: Testing equality between sets of coefficients after a preliminary test for equality of disturbance variances in two linear regressions. J. Econometrics 31 (1986), 67–80 | DOI | MR
[31] Neumann J. von: Distribution of the ratio of the mean square successive difference to the variance. Ann. Math. Statist. 12 (1941), 367–395 | DOI | MR
[32] Witkovský V.: Computing the distribution of a linear combination of inverted gamma variables. Kybernetika 37 (2001), 79–90 | MR
[33] Yatchew A. J.: Multivariate distributions involving ratios of normal variables. Comm. Statist. – Theory Methods 15 (1986), 1905–1926 | DOI | MR | Zbl