On geometric ergodicity and prediction in nonnegative non-linear autoregressive processes
Kybernetika, Tome 40 (2004) no. 6, pp. 691-702 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A non-linear AR(1) process is investigated when the associated white noise is positive. A criterion is derived for the geometric ergodicity of the process. Some explicit formulas are derived for one and two steps ahead extrapolation. Influence of parameter estimation on extrapolation is studied.
A non-linear AR(1) process is investigated when the associated white noise is positive. A criterion is derived for the geometric ergodicity of the process. Some explicit formulas are derived for one and two steps ahead extrapolation. Influence of parameter estimation on extrapolation is studied.
Classification : 62M10, 62M20
Keywords: geometric ergodicity; non-linear autoregression; least squares extrapolation
@article{KYB_2004_40_6_a3,
     author = {Zv\'ara, Petr},
     title = {On geometric ergodicity and prediction in nonnegative non-linear autoregressive processes},
     journal = {Kybernetika},
     pages = {691--702},
     year = {2004},
     volume = {40},
     number = {6},
     mrnumber = {2120391},
     zbl = {1248.62163},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a3/}
}
TY  - JOUR
AU  - Zvára, Petr
TI  - On geometric ergodicity and prediction in nonnegative non-linear autoregressive processes
JO  - Kybernetika
PY  - 2004
SP  - 691
EP  - 702
VL  - 40
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a3/
LA  - en
ID  - KYB_2004_40_6_a3
ER  - 
%0 Journal Article
%A Zvára, Petr
%T On geometric ergodicity and prediction in nonnegative non-linear autoregressive processes
%J Kybernetika
%D 2004
%P 691-702
%V 40
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a3/
%G en
%F KYB_2004_40_6_a3
Zvára, Petr. On geometric ergodicity and prediction in nonnegative non-linear autoregressive processes. Kybernetika, Tome 40 (2004) no. 6, pp. 691-702. http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a3/

[1] Anděl J.: Non-negative autoregressive processes. J. Time Ser. Anal. 10 (1989), 1–11 | DOI

[2] Anděl J.: On least-squares and naive extrapolations in a non-linear AR(1) process. Test 6 (1997), 91–100 | DOI | MR

[3] Anděl J., Dupač V.: Extrapolations in non-linear autoregressive processes. Kybernetika 35 (1999), 383–389 | MR

[4] Bhansali R. J.: Effects of not knowing the order of an autoregressive process on the mean squared error of prediction – I. J. Amer. Statist. Assoc. 76 (1981), 588–597 | MR | Zbl

[5] Bhattacharya R., Lee, Ch.: On geometric ergodicity of non-linear autoregressive models. Statist. Probab. Lett. 22 (1995), 311–315 | DOI | MR

[6] Cline D. B. H., Pu H.: Verifying irreducibility and continuity of a non-linear time series. Statist. Probab. Lett. 40 (1998), 139–148 | DOI | MR

[7] Datta S., Mathew, G., McCormick W. P.: Nonlinear autoregression with positive innovations. Austral. & New Zealand J. Statist. 40 (1998), 229–239 | DOI | MR | Zbl

[8] Fuller W. A., Hasza D. P.: Predictors for the first-order autoregressive process. J. Econometrics 13 (1980), 139–157 | DOI | MR | Zbl

[9] Lee O.: On probabilistic properties of non-linear ARMA($p,q$) models. Statist. Probab. Lett. 46 (2000), 121–131 | DOI | MR

[10] Moeanaddin R., Tong H.: Numerical evaluation of distributions in non-linear autoregression. J. Time Ser. Anal. 11 (1990), 33–48 | DOI | MR

[11] Tjøstheim D.: Non-linear time series and Markov chains. Adv. in Appl. Probab. 22 (1990), 587–611 | DOI

[12] Tong H.: Non-linear Time Series. Clarendon Press, Oxford 1990 | Zbl