Keywords: geometric ergodicity; non-linear autoregression; least squares extrapolation
@article{KYB_2004_40_6_a3,
author = {Zv\'ara, Petr},
title = {On geometric ergodicity and prediction in nonnegative non-linear autoregressive processes},
journal = {Kybernetika},
pages = {691--702},
year = {2004},
volume = {40},
number = {6},
mrnumber = {2120391},
zbl = {1248.62163},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a3/}
}
Zvára, Petr. On geometric ergodicity and prediction in nonnegative non-linear autoregressive processes. Kybernetika, Tome 40 (2004) no. 6, pp. 691-702. http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a3/
[1] Anděl J.: Non-negative autoregressive processes. J. Time Ser. Anal. 10 (1989), 1–11 | DOI
[2] Anděl J.: On least-squares and naive extrapolations in a non-linear AR(1) process. Test 6 (1997), 91–100 | DOI | MR
[3] Anděl J., Dupač V.: Extrapolations in non-linear autoregressive processes. Kybernetika 35 (1999), 383–389 | MR
[4] Bhansali R. J.: Effects of not knowing the order of an autoregressive process on the mean squared error of prediction – I. J. Amer. Statist. Assoc. 76 (1981), 588–597 | MR | Zbl
[5] Bhattacharya R., Lee, Ch.: On geometric ergodicity of non-linear autoregressive models. Statist. Probab. Lett. 22 (1995), 311–315 | DOI | MR
[6] Cline D. B. H., Pu H.: Verifying irreducibility and continuity of a non-linear time series. Statist. Probab. Lett. 40 (1998), 139–148 | DOI | MR
[7] Datta S., Mathew, G., McCormick W. P.: Nonlinear autoregression with positive innovations. Austral. & New Zealand J. Statist. 40 (1998), 229–239 | DOI | MR | Zbl
[8] Fuller W. A., Hasza D. P.: Predictors for the first-order autoregressive process. J. Econometrics 13 (1980), 139–157 | DOI | MR | Zbl
[9] Lee O.: On probabilistic properties of non-linear ARMA($p,q$) models. Statist. Probab. Lett. 46 (2000), 121–131 | DOI | MR
[10] Moeanaddin R., Tong H.: Numerical evaluation of distributions in non-linear autoregression. J. Time Ser. Anal. 11 (1990), 33–48 | DOI | MR
[11] Tjøstheim D.: Non-linear time series and Markov chains. Adv. in Appl. Probab. 22 (1990), 587–611 | DOI
[12] Tong H.: Non-linear Time Series. Clarendon Press, Oxford 1990 | Zbl