Keywords: matrix pencils; the Kronecker invariants; matrix completion; linear systems; state feedback
@article{KYB_2004_40_6_a1,
author = {Loiseau, Jean-Jacques and Zagalak, Petr and Mondi\'e, Sabine},
title = {Some remarks on matrix pencil completion problems},
journal = {Kybernetika},
pages = {665--680},
year = {2004},
volume = {40},
number = {6},
mrnumber = {2120389},
zbl = {1249.93081},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a1/}
}
Loiseau, Jean-Jacques; Zagalak, Petr; Mondié, Sabine. Some remarks on matrix pencil completion problems. Kybernetika, Tome 40 (2004) no. 6, pp. 665-680. http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a1/
[1] Baragaña I., Zaballa I.: Column completion of a pair of matrices. Linear and Multilinear Algebra 27 (1990), 243–273 | DOI | MR | Zbl
[2] Cabral I., Silva F. C.: Unified theorems on completions of matrix pencils. Linear Algebra and its Applications 159 (1991), 43–54 | MR | Zbl
[3] Gantmacher F. R.: Matrix Theory. Vol. II. Chelsea, New York 1974
[4] Hautus M. L. J., Heymann M.: Linear feedback: an algebraic approach. SIAM J. Control Optim. 7 (1978) 50–63 | MR | Zbl
[5] Herrera A., Mondié S.: On the complete controllability indices assignment problem. To appear
[6] Heymann M.: Controllability indices and feedback simulation. SIAM J. Control Optim. 14 (1981), 4, 769–789 | DOI | MR
[7] Kailath T.: Linear Systems. Englewood Cliffs, Prentice–Hall, NJ 1980 | MR | Zbl
[8] Kronecker L.: Algebraische reduction der schaaren bilinearer formen. S.-B. Akad. Berlin 1890, pp. 763–776
[9] Kučera V.: Assigning the invariant factors by feedback. Kybernetika 17 (1981), 2, 118–127 | MR
[10] Loiseau J. J.: Contribution à l’étude des sous–espaces presque invariants. Thèse de Doctorat de l’Université de Nantes, 1986
[11] Loiseau J. J.: Pole placement and related problems. Kybernetika 28 (1992), 2, 90–100 | MR | Zbl
[12] Loiseau J. J., Mondié S., Zaballa, I., Zagalak P.: Assigning the Kronecker invariants to a matrix pencil by row or column completions. Linear Algebra Appl. 278 (1998), 327–336 | MR
[13] Loiseau J. J., Zagalak P.: On a special case of model matching. Internat. J. Control 77 (1994), 2, 164–172 | DOI | MR
[14] Mondié S.: Contribución al estudio de modificaciones estructurales de sitemas lineales. Ph.D. Thesis, Dept. Ing. Electrica, CINVESTAV del IPN, México, D.F. 1996
[15] Mondié S., Loiseau J. J.: Structure assignment of state–output systems by choice of the output equation. In: Proc. IFAC Conference on System Structure and Control, Nantes 1995, pp. 172–177
[16] Mondié S., Loiseau J. J.: Simultaneous zeros and controllability indices assignment through nonregular static state feedback. In: Proc. 36th IEEE Conference on Decision and Control, San Diego 1997
[17] Mondié S., Loiseau J. J.: Structure assignment of right invertible implicit systems through nonregular static state feedback. In: Proc. European Control Conference, Brussels 1997
[18] Mondié S., Zagalak, P., Kučera V.: State feedback in linear control theory. Linear Algebra and its Applications 317 (2000), 177–192 | MR | Zbl
[19] Morse A. S.: Structural invariants of linear multivariable systems. SIAM J. Control 11 (1973), 446–465 | DOI | MR | Zbl
[20] Rosenbrock H. H.: State Space and Multivariable Theory. Nelson, London 1970 | MR | Zbl
[21] Sá E. Marques de: Imbedding conditions for $\lambda $-matrices. Linear Algebra Appl. 24 (1979) , 33–50 | DOI | MR | Zbl
[22] Thompson R. C.: Interlacing inequalities for invariant factors. Linear Algebra Appl. 24 (1979), 1–31 | DOI | MR | Zbl
[23] Wolovich W. A.: Multivariable Linear Systems. Springer Verlag, 1974 | MR
[24] Zaballa I.: Interlacing inequalities and control theory. Linear Algebra Appl. 87 (1987), 113–146 | MR
[25] Zaballa I.: Feedback invariants of matrix quadruple completions. Linear Algebra Appl. 292 (1999), 73–97 | MR | Zbl
[26] Zagalak P., Loiseau J. J.: Invariant Factors Assignment in Linear Systems. In: Proc. International Symposium on Implicit and Nonlinear Systems, The University of Texas, Arlington 1992, pp. 197–204