Keywords: nonlinear; chaotic; synchronization; observer
@article{KYB_2004_40_6_a0,
author = {\v{C}elikovsk\'y, Sergej},
title = {Observer form of the hyperbolic type generalized {Lorenz} system and its use for chaos synchronization},
journal = {Kybernetika},
pages = {649--664},
year = {2004},
volume = {40},
number = {6},
mrnumber = {2120388},
zbl = {1249.93090},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a0/}
}
Čelikovský, Sergej. Observer form of the hyperbolic type generalized Lorenz system and its use for chaos synchronization. Kybernetika, Tome 40 (2004) no. 6, pp. 649-664. http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a0/
[1] Agiza H. N., Yassen M. T.: Synchronization of Rössler and Chen chaotic dynamical systems using active control. Phys. Lett. A 278 (2000), 191–197 | DOI | MR | Zbl
[2] Alvarez-Ramirez J., Puebla, H., Cervantes I.: Stability of observer-based chaotic communications for a class of Lur’e systems. Internat. J. Bifur. Chaos 7 (2002), 1605–1618 | DOI
[3] Blekman I. I., Fradkov A. L., Nijmeijer, H., Pogromsky A. Y.: On self-synchronization and controlled synchronization. Systems Control Lett. 31 (1997), 299–305 | DOI | MR
[4] Čelikovský S., Vaněček A.: Bilinear systems and chaos. Kybernetika 30 (1994), 403–424
[5] Čelikovský S., Chen G.: On a generalized Lorenz canonical form of chaotic systems. Internat. J. Bifur. Chaos 12 (2002), 1789–1812 | DOI | MR | Zbl
[6] Čelikovský S., Chen G.: Synchronization of a class of chaotic systems via a nonlinear observer approach. In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 3895–3900
[7] Čelikovský S., Chen G.: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM
[8] Čelikovský S., Ruiz-Léon J. J., Sapiens A. J., Torres-Muñoz J. A.: Output feedback problems for a class of nonlinear systems. Kybernetika 39 (2003), 389–414 | MR
[9] Chen G., Dong X.: From Chaos to Order: Methodologies, Perspectives, and Applications. World Scientific, Singapore 1998 | MR | Zbl
[10] Chen G., Ueta T.: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999), 1465–1466 | DOI | MR | Zbl
[11] Dachselt F., Schwartz W.: Chaos and cryptography. IEEE Trans. Circuits and Systems 48 (2001), 1498–1509 | DOI | MR
[12] Fradkov A. L., Nijmeijer, H., Pogromsky A. Yu.: Adaptive observer based synhronization. In: Controlling Chaos and Bifurcations in Engineering Systems (G. Chen, ed.), CRC Press, Boca Raton 1999, pp. 417–435 | MR
[13] Grassi G., Mascolo S.: Synchronization of high-order oscillators by observer design with application to hyperchaos-based cryptography. Internat. J. Circuit Theory Appl. 27 (1999), 543–553 | DOI | Zbl
[14] Itoh M., Chua L. O.: Reconstruction and synchronization of hyperchaotic circuits via one state variable. Internat. J. Bifur. Chaos 12 (2002), 2069–2085 | DOI | MR | Zbl
[15] Krener A. J.: Nonlinear stabilizability and detectability. In: Systems and Networks: Mathematical Theory and Applications, Vol. I (U. Helmke, R. Mennicken, and J. Sauer, eds.), Akademie Verlag, Berlin 199x, pp. 231–250 | MR
[16] Krener A. J., Isidori A.: Linearization by output injection and nonlinear observers. Systems Control Lett. 3 (1983), 47–52 | MR | Zbl
[17] Krener A. J., Respondek W.: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 197–216 | DOI | MR | Zbl
[18] Lian J., Liu P.: Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis. IEEE Trans. Circuits and Systems 47 (2000), 1418–1424 | DOI | MR | Zbl
[19] Lü J., Chen G., Cheng, D., Čelikovský S.: Bridge the gap between the Lorenz system and the Chen system. Internat. J. Bifur. Chaos 12 (2002), 2917–2926 | DOI | MR | Zbl
[20] Marino P., Tomei P.: Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice–Hall, London 1991 | Zbl
[21] Nijmeijer H., Shaft A. J. van der: Nonlinear Dynamical Control Systems. Springer–Verlag, New York 1990 | MR
[22] Nijmeijer H.: A dynamical control view on synchronization. Phys. D 154 (2001), 219–228 | DOI | MR | Zbl
[23] Pecora L., Carrol T.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821–824 | DOI | MR
[24] Pogromsky A., Santoboni, G., Nijmeijer H.: Partial Synchronization: from symmetry towards stability. Phys. D 172 (2002), 65–87 | DOI | MR | Zbl
[25] Santoboni G., Pogromsky A. Y., Nijmeijer H.: An observer for phase synchronization of chaos. Phys. Lett. A 291 (2001), 265–273 | DOI | Zbl
[26] Santoboni G., Pogromsky A. Y., Nijmeijer H.: Partial observer and partial synchronization. Internat. J. Bifur. Chaos 13 (2003), 453–458 | DOI | MR
[27] Shilnikov A. L., Shilnikov L. P., Turaev D. V.: Normal forms and Lorenz attractors. Internat. J. Bifur. Chaos 3 (1993), 1123–1139 | DOI | MR
[28] Solak E., Morgül, Ö., Ersoy U.: Observer-based control of a class of chaotic systems. Phys. Lett. A 279 (2001), 47–55 | DOI | Zbl
[29] Ueta T., Chen G.: Bifurcation analysis of Chen’s equation. Internat. J. Bifur. Chaos 10 (2000), 1917–1931 | DOI | MR
[30] Vaněček A., Čelikovský S.: Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice–Hall, London 1996 | Zbl
[31] Wang X.: Chen’s attractor – a new chaotic attractor (in Chinese). Control Theory Appl. 16 (1999), 779 | MR
[32] Wiggins S.: Global Bifurcation and Chaos: Analytical Methods. Springer–Verlag, New York 1988 | MR
[33] Zhong G.-Q., Tang K. S.: Circuit implementaion and synchronization of Chen’s attractor. Internat. J. Bifur. Chaos 12 (2002), 1423–1427 | DOI