Observer form of the hyperbolic type generalized Lorenz system and its use for chaos synchronization
Kybernetika, Tome 40 (2004) no. 6, pp. 649-664 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper shows that a large class of chaotic systems, introduced in [S. Čelikovský and G. Chen: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM], as the hyperbolic-type generalized Lorenz system, can be systematically used to generate synchronized chaotic oscillations. While the generalized Lorenz system unifies the famous Lorenz system and Chen’s system [G. Chen and T. Ueta: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999)], the hyperbolic-type generalized Lorenz system is in some way complementary to it. Synchronization of two such systems is made through a scalar coupling signal based on nonlinear observer design using special change of coordinates to the so-called observer canonical form of the hyperbolic-type generalized Lorenz system. The properties of the suggested synchronization that make it attractive for the the secure encrypted communication application are discussed in detail. Theoretical results are supported by the computer simulations, showing viability of the suggested approach.
This paper shows that a large class of chaotic systems, introduced in [S. Čelikovský and G. Chen: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM], as the hyperbolic-type generalized Lorenz system, can be systematically used to generate synchronized chaotic oscillations. While the generalized Lorenz system unifies the famous Lorenz system and Chen’s system [G. Chen and T. Ueta: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999)], the hyperbolic-type generalized Lorenz system is in some way complementary to it. Synchronization of two such systems is made through a scalar coupling signal based on nonlinear observer design using special change of coordinates to the so-called observer canonical form of the hyperbolic-type generalized Lorenz system. The properties of the suggested synchronization that make it attractive for the the secure encrypted communication application are discussed in detail. Theoretical results are supported by the computer simulations, showing viability of the suggested approach.
Classification : 93B07, 93C10, 93D15, 93D20
Keywords: nonlinear; chaotic; synchronization; observer
@article{KYB_2004_40_6_a0,
     author = {\v{C}elikovsk\'y, Sergej},
     title = {Observer form of the hyperbolic type generalized {Lorenz} system and its use for chaos synchronization},
     journal = {Kybernetika},
     pages = {649--664},
     year = {2004},
     volume = {40},
     number = {6},
     mrnumber = {2120388},
     zbl = {1249.93090},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a0/}
}
TY  - JOUR
AU  - Čelikovský, Sergej
TI  - Observer form of the hyperbolic type generalized Lorenz system and its use for chaos synchronization
JO  - Kybernetika
PY  - 2004
SP  - 649
EP  - 664
VL  - 40
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a0/
LA  - en
ID  - KYB_2004_40_6_a0
ER  - 
%0 Journal Article
%A Čelikovský, Sergej
%T Observer form of the hyperbolic type generalized Lorenz system and its use for chaos synchronization
%J Kybernetika
%D 2004
%P 649-664
%V 40
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a0/
%G en
%F KYB_2004_40_6_a0
Čelikovský, Sergej. Observer form of the hyperbolic type generalized Lorenz system and its use for chaos synchronization. Kybernetika, Tome 40 (2004) no. 6, pp. 649-664. http://geodesic.mathdoc.fr/item/KYB_2004_40_6_a0/

[1] Agiza H. N., Yassen M. T.: Synchronization of Rössler and Chen chaotic dynamical systems using active control. Phys. Lett. A 278 (2000), 191–197 | DOI | MR | Zbl

[2] Alvarez-Ramirez J., Puebla, H., Cervantes I.: Stability of observer-based chaotic communications for a class of Lur’e systems. Internat. J. Bifur. Chaos 7 (2002), 1605–1618 | DOI

[3] Blekman I. I., Fradkov A. L., Nijmeijer, H., Pogromsky A. Y.: On self-synchronization and controlled synchronization. Systems Control Lett. 31 (1997), 299–305 | DOI | MR

[4] Čelikovský S., Vaněček A.: Bilinear systems and chaos. Kybernetika 30 (1994), 403–424

[5] Čelikovský S., Chen G.: On a generalized Lorenz canonical form of chaotic systems. Internat. J. Bifur. Chaos 12 (2002), 1789–1812 | DOI | MR | Zbl

[6] Čelikovský S., Chen G.: Synchronization of a class of chaotic systems via a nonlinear observer approach. In: Proc. 41st IEEE Conference on Decision and Control, Las Vegas 2002, pp. 3895–3900

[7] Čelikovský S., Chen G.: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congress of IFAC, Barcelona 2002, CD ROM

[8] Čelikovský S., Ruiz-Léon J. J., Sapiens A. J., Torres-Muñoz J. A.: Output feedback problems for a class of nonlinear systems. Kybernetika 39 (2003), 389–414 | MR

[9] Chen G., Dong X.: From Chaos to Order: Methodologies, Perspectives, and Applications. World Scientific, Singapore 1998 | MR | Zbl

[10] Chen G., Ueta T.: Yet another chaotic attractor. Internat. J. Bifur. Chaos 9 (1999), 1465–1466 | DOI | MR | Zbl

[11] Dachselt F., Schwartz W.: Chaos and cryptography. IEEE Trans. Circuits and Systems 48 (2001), 1498–1509 | DOI | MR

[12] Fradkov A. L., Nijmeijer, H., Pogromsky A. Yu.: Adaptive observer based synhronization. In: Controlling Chaos and Bifurcations in Engineering Systems (G. Chen, ed.), CRC Press, Boca Raton 1999, pp. 417–435 | MR

[13] Grassi G., Mascolo S.: Synchronization of high-order oscillators by observer design with application to hyperchaos-based cryptography. Internat. J. Circuit Theory Appl. 27 (1999), 543–553 | DOI | Zbl

[14] Itoh M., Chua L. O.: Reconstruction and synchronization of hyperchaotic circuits via one state variable. Internat. J. Bifur. Chaos 12 (2002), 2069–2085 | DOI | MR | Zbl

[15] Krener A. J.: Nonlinear stabilizability and detectability. In: Systems and Networks: Mathematical Theory and Applications, Vol. I (U. Helmke, R. Mennicken, and J. Sauer, eds.), Akademie Verlag, Berlin 199x, pp. 231–250 | MR

[16] Krener A. J., Isidori A.: Linearization by output injection and nonlinear observers. Systems Control Lett. 3 (1983), 47–52 | MR | Zbl

[17] Krener A. J., Respondek W.: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 197–216 | DOI | MR | Zbl

[18] Lian J., Liu P.: Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis. IEEE Trans. Circuits and Systems 47 (2000), 1418–1424 | DOI | MR | Zbl

[19] Lü J., Chen G., Cheng, D., Čelikovský S.: Bridge the gap between the Lorenz system and the Chen system. Internat. J. Bifur. Chaos 12 (2002), 2917–2926 | DOI | MR | Zbl

[20] Marino P., Tomei P.: Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice–Hall, London 1991 | Zbl

[21] Nijmeijer H., Shaft A. J. van der: Nonlinear Dynamical Control Systems. Springer–Verlag, New York 1990 | MR

[22] Nijmeijer H.: A dynamical control view on synchronization. Phys. D 154 (2001), 219–228 | DOI | MR | Zbl

[23] Pecora L., Carrol T.: Synchronization in chaotic systems. Phys. Rev. Lett. 64 (1990), 821–824 | DOI | MR

[24] Pogromsky A., Santoboni, G., Nijmeijer H.: Partial Synchronization: from symmetry towards stability. Phys. D 172 (2002), 65–87 | DOI | MR | Zbl

[25] Santoboni G., Pogromsky A. Y., Nijmeijer H.: An observer for phase synchronization of chaos. Phys. Lett. A 291 (2001), 265–273 | DOI | Zbl

[26] Santoboni G., Pogromsky A. Y., Nijmeijer H.: Partial observer and partial synchronization. Internat. J. Bifur. Chaos 13 (2003), 453–458 | DOI | MR

[27] Shilnikov A. L., Shilnikov L. P., Turaev D. V.: Normal forms and Lorenz attractors. Internat. J. Bifur. Chaos 3 (1993), 1123–1139 | DOI | MR

[28] Solak E., Morgül, Ö., Ersoy U.: Observer-based control of a class of chaotic systems. Phys. Lett. A 279 (2001), 47–55 | DOI | Zbl

[29] Ueta T., Chen G.: Bifurcation analysis of Chen’s equation. Internat. J. Bifur. Chaos 10 (2000), 1917–1931 | DOI | MR

[30] Vaněček A., Čelikovský S.: Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice–Hall, London 1996 | Zbl

[31] Wang X.: Chen’s attractor – a new chaotic attractor (in Chinese). Control Theory Appl. 16 (1999), 779 | MR

[32] Wiggins S.: Global Bifurcation and Chaos: Analytical Methods. Springer–Verlag, New York 1988 | MR

[33] Zhong G.-Q., Tang K. S.: Circuit implementaion and synchronization of Chen’s attractor. Internat. J. Bifur. Chaos 12 (2002), 1423–1427 | DOI