Keywords: multistage stochastic programming problem; approximation solution scheme; deterministic approximation; empirical estimate; Markov dependence
@article{KYB_2004_40_5_a7,
author = {Ka\v{n}kov\'a, Vlasta and \v{S}m{\'\i}d, Martin},
title = {On approximation in multistage stochastic programs: {Markov} dependence},
journal = {Kybernetika},
pages = {625--638},
year = {2004},
volume = {40},
number = {5},
mrnumber = {2121001},
zbl = {1249.90183},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a7/}
}
Kaňková, Vlasta; Šmíd, Martin. On approximation in multistage stochastic programs: Markov dependence. Kybernetika, Tome 40 (2004) no. 5, pp. 625-638. http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a7/
[1] Anděl J.: Mathematical Statistics (in Czech). SNTL, Prague 1985
[2] Dal L., Chen C. H., Birge J. R.: Convergence properties of two-stage stochastic programming. J. Optim. Theory Appl. 106 (2000), 3, 489–509 | DOI | MR
[3] Dupačová J., Wets R. J.-B.: Asymptotic behaviour of statistical estimates and optimal solutions of stochastic optimization problems. Ann. Statist. 16 (1984), 1517–1549 | DOI | MR
[4] Dupačová J.: Multistage stochastic programs: The state-of-the-art and selected bibliography. Kybernetika 31 (1995), 151–174 | MR | Zbl
[5] Hoeffding W.: Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 38 (1963), 13–30 | DOI | MR | Zbl
[6] Houda M.: Stability and Estimates in Stochastic Programming (Special Cases) (in Czech). Diploma Work. Faculty of Mathematics and Physics, Charles University, Prague 2001
[7] Kaňková V.: An approximative solution of stochastic optimization problem. In: Trans. Eighth Prague Conference, Academia, Prague 1978, pp. 349–353
[8] Kaňková V.: Approximative solution of problems of two–stage stochastic nonlinear programming (in Czech). Ekonomicko–matematický obzor 16 (1980), 1, 64–76 | MR
[9] Kaňková V., Lachout P.: Convergence rate of empirical estimates in stochastic programming. Informatica 3 (1992), 4, 497–522 | MR | Zbl
[10] Kaňková V.: A note on estimates in stochastic programming. J. Comput. Math. 56 (1994), 97–112 | DOI | MR
[11] Kaňková V.: A note on multistage stochastic programming. In: Proc. 11th joint Czech–Germany–Slovak Conference: Mathematical Methods in Economy and Industry. University of Technology, Liberec (Czech Republic) 1998, pp. 45–52
[12] Kaňková V.: A remark on the analysis of multistage stochastic programs: Markov dependence. Z. angew. Math. Mech. 82 (2002), 11–12, 781–793 | MR | Zbl
[13] Kaňková V.: A remark on empirical estimates in multistage stochastic programming. Bulletin of the Czech Econometric Society 17/2002, 32–51
[14] Kaňková V., Šmíd M.: A Remark on Approximation in Multistage Stochastic Programs; Markov Dependence. Research Report ÚTIA AS CR, No. 2102, July 2004 | MR
[15] Pfug G. Ch.: Optimization of Stochastic Models; The Interface Between Simulation and Optimization. Kluwer, London 1996 | MR
[16] Prékopa A.: Stochastic Programming. Kluwer, Dordrecht and Académiai Kiadó, Budapest 1995 | MR | Zbl
[17] Rachev S. T.: Probability Metrics and the Stability of Stochastic Models. Wiley, Chichester 1991 | MR | Zbl
[18] Römisch W., Wakolbinger A.: Obtaining convergence rate for approximations in stochastic programming. In: Parametric Optimization and Related Topics (J. Guddat, ed.), Akademie Verlag, Berlin 1987, pp. 327–343 | MR
[19] Römisch W., Schulz R.: Stability of solutions for stochastic programs with complete recourse. Math. Oper. Res. 18 (1993), 590–609 | DOI | MR
[20] Shapiro A.: Quantitative stability in stochastic programming. Math. Programming 67 (1994), 99–108 | DOI | MR | Zbl
[21] Serfling J. R.: Approximation Theorems of Mathematical Statistics. Wiley, New York 1980 | MR | Zbl
[22] Šmíd M.: Notes on Approximate Computation of Expectation. Research Report ÚTIA AS CR, No. 2077, May 2003
[23] Schulz R.: Rates of convergence in stochastic programs with complete integer recourse. SIAM J. Optim. 6 (1996), 1138–1152 | DOI | MR
[24] Vallander S. S.: Calculation of the Wasserstein distance between probability distributions on the line (in Russian). Theor. Prob. Appl. 18 (1973), 783–76 | MR
[25] Vogel S.: On stability in multiobjective programming – a stochastic approach. Math. Programming 56 (1992), 91–119 | DOI | MR | Zbl
[26] Wang J.: Continuity of the feasible solution sets of probabilistic constrained programs. J. Optim. Theory Appl. 63 (1994), 1, 79–89 | DOI | MR