Keywords: Schwarz iterative solution; cooperative systems; steady states of evolution problems
@article{KYB_2004_40_5_a6,
author = {Marek, Ivo},
title = {Schwarz-like methods for approximate solving cooperative systems},
journal = {Kybernetika},
pages = {611--624},
year = {2004},
volume = {40},
number = {5},
mrnumber = {2121000},
zbl = {1249.65070},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a6/}
}
Marek, Ivo. Schwarz-like methods for approximate solving cooperative systems. Kybernetika, Tome 40 (2004) no. 5, pp. 611-624. http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a6/
[1] Benzi M., Frommer A., Nabben, R., Szyld D.: Algebraic theory of multiplicative Schwarz methods. Numer. Math. 89 (2002), 605–639 | DOI | MR | Zbl
[2] Benzi M., Szyld D. B.: Existence and uniqueness of splittings for stationary iterative methods with applications to alterning methods. Numer. Math. 76 (1997), 309–321 | DOI | MR
[3] Berman A., Plemmons R.: Non-negative Matrices in the Mathematical Sciences. Academic Press, New York 1979 | MR
[4] Bohl E.: A boundary layer phenomenon for linear systems with a rank deficient matrix. Z. Angew. Math. Mech. 7/8 (1991), 223–231 | DOI | MR | Zbl
[5] Bohl E.: Constructing amplification via chemical circuits. In: Biomedical Modeling Simulation (J. Eisarfeld, D. S. Leonis, and M. Witken, eds.), Elsevier Science Publ. B. V. 1992, pp. 331–334
[6] Bohl E.: Structural amplification in chemical networks. In: Complexity, Chaos and Biological Evolution (E. Mosekilde and L. Mosekilde, eds.), Plenum Press, New York 1991, pp. 119–128
[7] Bohl E., Boos W.: Quantitative analysis of binding protein-mediated ABC transport system. J. Theoret. Biol. 186 (1997), 65–74 | DOI
[8] Bohl E., Lancaster P.: Perturbation of spectral inverses applied to a boundary layer phenomenon arizing in chemical networks. Linear Algebra Appl. 180 (1993), 65–74 | DOI | MR
[9] Bohl E., Marek I.: A model of amplification. J. Comput. Appl. Math. 63 (1995), 27–47 | DOI | MR | Zbl
[10] Bohl E., Marek I.: A nonlinear model involving M-operators. An amplification effect measured in the cascade of vision. J. Comput. Appl. Math. 60 (1994), 13–28 | DOI | MR
[11] Bohl E., Marek I.: A stability theorem for a class of linear evolution problems. Integral Equations Operator Theory 34 (1999), 251–269 | DOI | MR
[12] Bohl E., Marek I.: Existence and uniqueness results for nonlinear cooperative systems. Oper. Theory: Adv. Appl. 130 (2001), 153–170 | MR | Zbl
[13] Hille E., Phillips R. S.: Functional Analysis and Semigroups (Amer. Math. Society Coll. Publ. Vol. XXXI). Third printing of Revised Edition Providence, RI 1968
[14] Krein M. G., Rutman M. A.: Linear operators leaving invariant a cone in a Banach space. Uspekhi Mat. Nauk III (1948), 1, 3–95. (In Russian.) English translation in Amer. Math. Soc. Transl. 26 (1950) | MR | Zbl
[15] Marek I.: Frobenius theory of positive operators. Comparison theorems and applications. SIAM J. Appl. Math. 19 (1970), 608–628 | DOI | MR | Zbl
[16] Marek I., Szyld D.: Algebraic Schwarz methods for the numerical solution of Markov chains. Linear Algebra Appl. Submitted | MR | Zbl
[17] Marek I., Žitný K.: Analytic Theory of Matrices for Applied Sciences, Vol 1. (Teubner Texte zur Mathematik Band 60.) Teubner, Leipzig 1983 | MR
[18] Ortega J. M., Rheinboldt W.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York – San – Francisco – London 1970 | MR | Zbl
[19] Schaefer H. H.: Banach Lattices and Positive Operators. Springer–Verlag, Berlin – Heidelberg – New York 1974 | MR | Zbl
[20] Stewart W. J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton, NJ 1994 | MR | Zbl
[21] Taylor A. E., Lay D. C.: Introduction to Functional Analysis. Second edition. Wiley, New York 1980 | MR | Zbl
[22] Tralau C., Greller G., Pajatsch M., Boos, W., Bohl E.: Mathematical treatment of transport data of bacterial transport system to estimate limitation in diffusion through the outer membrane. J. Theoret. Biol. 207 (2000), 1–14 | DOI
[23] Varga R. S.: Matrix Iterative Analysis. Prentice–Hall, Englewood Cliffs, NJ 1962. Second edition, revised and expanded. Springer–Verlag, Berlin – Heidelberg – New York 2000 | MR