Keywords: hierarchical game; Nash equilibrium; stationarity conditions
@article{KYB_2004_40_5_a4,
author = {Outrata, Ji\v{r}{\'\i} V.},
title = {A note on a class of equilibrium problems with equilibrium constraints},
journal = {Kybernetika},
pages = {585--594},
year = {2004},
volume = {40},
number = {5},
mrnumber = {2120998},
zbl = {1249.49017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a4/}
}
Outrata, Jiří V. A note on a class of equilibrium problems with equilibrium constraints. Kybernetika, Tome 40 (2004) no. 5, pp. 585-594. http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a4/
[1] J.-P.Aubin: Optima and Equilibria. Springer–Verlag, Berlin 1993 | MR | Zbl
[2] Clarke F. H.: Optimization and Nonsmooth Analysis. Wiley, New York 1983 | MR | Zbl
[3] Dontchev A. D., Rockafellar R. T.: Characterization of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim. 7 (1996), 1087–1105 | DOI | MR
[4] Eaves B. C.: Homotopies for computation of fixed points. Math. Programming 3 (1972), 1–22 | DOI | MR | Zbl
[5] Fang S. C., Peterson E. L.: Generalized variational inequalities. J. Optim. Theory Appl. 38 (1982), 363–383 | DOI | MR | Zbl
[6] Harker P. T., Choi S. C.: A Penalty Function Approach for Mathematical Programs with Variational Inequality Constraints. WP 87-08-08, University of Pennsylvania | Zbl
[7] Hu X., Ralph D., Ralph E. K., Bardsley, P., Ferris M. C.: The Effect of Transmission Capacities on Competition in Deregulated Electricity Markets. Preprint 2002
[8] Luo Z.-Q., Pang J.-S., Ralph D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge 1996 | MR | Zbl
[9] Mordukhovich B. S.: Approximation Methods in Problems of Optimization and Control (in Russian). Nauka, Moscow 1988 | MR
[10] Mordukhovich B. S.: Generalized differential calculus for nonsmooth and set-valued mappings. J. Math. Anal. Appl. 183 (1994), 250–288 | DOI | MR | Zbl
[11] Mordukhovich B. S.: Optimization and Equilibrium Problems with Equilibrium Constraints. Preprint 2003. To appear in Omega | MR | Zbl
[12] Mordukhovich B. S.: Equlibrium problems with equilibrium constraints via multiobjective optimization. Optimization Methods & Software 19 (2004), 5 | DOI | MR
[13] Murphy F. H., Sherali H. D., Soyster A. L.: A mathematical programming approach for determining oligopolistic market equilibrium. Math. Programming 24 (1982), 92–106 | DOI | MR | Zbl
[14] Nash J. F.: Non-cooperative games. Ann. of Math. 54 (1951), 286–295 | DOI | MR | Zbl
[15] Outrata J. V.: Optimality conditions for a class of mathematical programs with equilibrium constraints. Math. Oper. Res. 24 (1999), 627–644 | DOI | MR | Zbl
[16] Outrata J. V.: On constrained qualifications for mathematical programs with mixed complementarity constraints. In: Complementarity: Applications, Algorithms and Extensions (M. C. Ferris, O. L. Mangasarian and J.-S. Pang, eds.), Kluwer, Dordrecht 2001, pp. 253–272 | MR
[17] Outrata J. V., Zowe J.: A numerical approach to optimization problems with variational inequality constraints. Math. Programming 68 (1995), 105–130 | DOI | MR | Zbl
[18] Outrata J. V., Kočvara, M., Zowe J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht 1998 | MR | Zbl
[19] Robinson S. M.: Some continuity properties of polyhedral multifunctions. Math. Programming Stud. 14 (1981), 206–214 | DOI | MR | Zbl
[20] Scholtes S.: On the existence and computation of EPEC solutions. A talk given at the ICCP Conference in Cambridge, 2002
[21] Scheel H., Scholtes S.: Mathematical programs with equilibrium constraints: Stationarity, optimality and sensitivity. Math. Oper. Res. 25 (2000), 1–22 | DOI | MR
[22] Ye J. J., Ye X. Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22 (1997), 977–997 | DOI | MR | Zbl