A note on a class of equilibrium problems with equilibrium constraints
Kybernetika, Tome 40 (2004) no. 5, pp. 585-594 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper concerns a two-level hierarchical game, where the players on each level behave noncooperatively. In this way one can model eg an oligopolistic market with several large and several small firms. We derive two types of necessary conditions for a solution of this game and discuss briefly the possibilities of its computation.
The paper concerns a two-level hierarchical game, where the players on each level behave noncooperatively. In this way one can model eg an oligopolistic market with several large and several small firms. We derive two types of necessary conditions for a solution of this game and discuss briefly the possibilities of its computation.
Classification : 49J40, 49J52, 49K40, 65K10, 90C30, 90C47, 91A65, 91B24
Keywords: hierarchical game; Nash equilibrium; stationarity conditions
@article{KYB_2004_40_5_a4,
     author = {Outrata, Ji\v{r}{\'\i} V.},
     title = {A note on a class of equilibrium problems with equilibrium constraints},
     journal = {Kybernetika},
     pages = {585--594},
     year = {2004},
     volume = {40},
     number = {5},
     mrnumber = {2120998},
     zbl = {1249.49017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a4/}
}
TY  - JOUR
AU  - Outrata, Jiří V.
TI  - A note on a class of equilibrium problems with equilibrium constraints
JO  - Kybernetika
PY  - 2004
SP  - 585
EP  - 594
VL  - 40
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a4/
LA  - en
ID  - KYB_2004_40_5_a4
ER  - 
%0 Journal Article
%A Outrata, Jiří V.
%T A note on a class of equilibrium problems with equilibrium constraints
%J Kybernetika
%D 2004
%P 585-594
%V 40
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a4/
%G en
%F KYB_2004_40_5_a4
Outrata, Jiří V. A note on a class of equilibrium problems with equilibrium constraints. Kybernetika, Tome 40 (2004) no. 5, pp. 585-594. http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a4/

[1] J.-P.Aubin: Optima and Equilibria. Springer–Verlag, Berlin 1993 | MR | Zbl

[2] Clarke F. H.: Optimization and Nonsmooth Analysis. Wiley, New York 1983 | MR | Zbl

[3] Dontchev A. D., Rockafellar R. T.: Characterization of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim. 7 (1996), 1087–1105 | DOI | MR

[4] Eaves B. C.: Homotopies for computation of fixed points. Math. Programming 3 (1972), 1–22 | DOI | MR | Zbl

[5] Fang S. C., Peterson E. L.: Generalized variational inequalities. J. Optim. Theory Appl. 38 (1982), 363–383 | DOI | MR | Zbl

[6] Harker P. T., Choi S. C.: A Penalty Function Approach for Mathematical Programs with Variational Inequality Constraints. WP 87-08-08, University of Pennsylvania | Zbl

[7] Hu X., Ralph D., Ralph E. K., Bardsley, P., Ferris M. C.: The Effect of Transmission Capacities on Competition in Deregulated Electricity Markets. Preprint 2002

[8] Luo Z.-Q., Pang J.-S., Ralph D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge 1996 | MR | Zbl

[9] Mordukhovich B. S.: Approximation Methods in Problems of Optimization and Control (in Russian). Nauka, Moscow 1988 | MR

[10] Mordukhovich B. S.: Generalized differential calculus for nonsmooth and set-valued mappings. J. Math. Anal. Appl. 183 (1994), 250–288 | DOI | MR | Zbl

[11] Mordukhovich B. S.: Optimization and Equilibrium Problems with Equilibrium Constraints. Preprint 2003. To appear in Omega | MR | Zbl

[12] Mordukhovich B. S.: Equlibrium problems with equilibrium constraints via multiobjective optimization. Optimization Methods & Software 19 (2004), 5 | DOI | MR

[13] Murphy F. H., Sherali H. D., Soyster A. L.: A mathematical programming approach for determining oligopolistic market equilibrium. Math. Programming 24 (1982), 92–106 | DOI | MR | Zbl

[14] Nash J. F.: Non-cooperative games. Ann. of Math. 54 (1951), 286–295 | DOI | MR | Zbl

[15] Outrata J. V.: Optimality conditions for a class of mathematical programs with equilibrium constraints. Math. Oper. Res. 24 (1999), 627–644 | DOI | MR | Zbl

[16] Outrata J. V.: On constrained qualifications for mathematical programs with mixed complementarity constraints. In: Complementarity: Applications, Algorithms and Extensions (M. C. Ferris, O. L. Mangasarian and J.-S. Pang, eds.), Kluwer, Dordrecht 2001, pp. 253–272 | MR

[17] Outrata J. V., Zowe J.: A numerical approach to optimization problems with variational inequality constraints. Math. Programming 68 (1995), 105–130 | DOI | MR | Zbl

[18] Outrata J. V., Kočvara, M., Zowe J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht 1998 | MR | Zbl

[19] Robinson S. M.: Some continuity properties of polyhedral multifunctions. Math. Programming Stud. 14 (1981), 206–214 | DOI | MR | Zbl

[20] Scholtes S.: On the existence and computation of EPEC solutions. A talk given at the ICCP Conference in Cambridge, 2002

[21] Scheel H., Scholtes S.: Mathematical programs with equilibrium constraints: Stationarity, optimality and sensitivity. Math. Oper. Res. 25 (2000), 1–22 | DOI | MR

[22] Ye J. J., Ye X. Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22 (1997), 977–997 | DOI | MR | Zbl