Keywords: log-barrier method; Mangasarian–Fromovitz constraint qualification; convergence ofprimal-dual solutions; locally linearized problems; Lipschitz estimates
@article{KYB_2004_40_5_a3,
author = {Grossmann, Christian and Klatte, Diethard and Kummer, Bernd},
title = {Convergence of primal-dual solutions for the nonconvex log-barrier method without {LICQ}},
journal = {Kybernetika},
pages = {571--584},
year = {2004},
volume = {40},
number = {5},
mrnumber = {2120997},
zbl = {1249.90252},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a3/}
}
TY - JOUR AU - Grossmann, Christian AU - Klatte, Diethard AU - Kummer, Bernd TI - Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ JO - Kybernetika PY - 2004 SP - 571 EP - 584 VL - 40 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a3/ LA - en ID - KYB_2004_40_5_a3 ER -
Grossmann, Christian; Klatte, Diethard; Kummer, Bernd. Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ. Kybernetika, Tome 40 (2004) no. 5, pp. 571-584. http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a3/
[1] Adler I., Monteiro R. D. C.: Limiting behavior of the affine scaling continuous trajectories for linear programming problems. Math. Programming 50 (1991), 29–51 | DOI | MR | Zbl
[2] Bank B., Guddat J., Klatte D., Kummer, B., Tammer K.: Non-linear Parametric Optimization. Akademie–Verlag, Berlin 1982 | Zbl
[3] El-Bakry A. S., Tapia R. A., Zhang Y.: On the convergence rate of Newton interior-point methods in the absence of strict complementarity. Comput. Optim. Appl. 6 (1996), 157–167 | DOI | MR | Zbl
[4] Fiacco A. V., McCormick G. P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York 1968 | MR | Zbl
[5] Forsgren A., Gill P. E., Wright M. H.: Interior methods for nonlinear optimization. SIAM Rev. 44 (2002), 525–597 | DOI | MR | Zbl
[6] Grossmann C.: Convergence analysis for penalty/barrier path-following in linearly constrained convex programming. Discuss. Math.: Differential Inclusions, Control and Optimization 20 (2000), 7–26 | MR
[7] Grossmann C., Kaplan A. A.: Strafmethoden und modifizierte Lagrange Funktionen in der nichtlinearen Optimierung. Teubner, Leipzig 1979 | MR | Zbl
[8] Grossmann C., Schöniger G.: Sensitivität und Anwendbarkeit von Straf–Barriere–Methoden. Z. Angew. Math. Mech. 57 (1977), 419–430 | DOI | Zbl
[9] Guddat J., Guerra, F., Nowack D.: On the role of the Mangasarian-Fromovitz constraint qualification for penalty-, exact penalty-, and Lagrange multiplier methods. In: Mathematical programming with data perturbations (A. Fiacco, ed.), (Lecture Notes in Pure and Appl. Mathematics 195). Marcel Dekker, Dordrecht 1997, pp. 159–183 | MR
[10] Güler O.: Limiting behavior of weighted central paths in linear programming. Math. Programming 65A (1994), 347–363 | DOI | MR | Zbl
[11] Klatte D., Kummer B.: Nonsmooth Equations in Optimization – Regularity, Calculus, Methods and Applications. Kluwer, Dordrecht 2002 | MR | Zbl
[12] Kummer B.: On solvability and regularity of a parametrized version of optimality conditions. Z. Oper. Res.: Math. Meth. Oper. Res. 45 (1995), 215–230 | MR | Zbl
[13] Kummer B.: Parametrizations of Kojima’s system and relations to penalty and barrier functions. Math. Programming, Ser. B 76 (1997), 579–592 | DOI | MR | Zbl
[14] Nožička F., Guddat J., Hollatz, H., Bank B.: Theorie der linearen parametrischen Optimierung. Akademie–Verlag, Berlin 1974 | Zbl
[15] Owen G.: Spieltheorie. Springer–Verlag, Berlin 1971 (Translation) | MR | Zbl
[16] Ralph D., Wright S. J.: Superlinear convergence of an interior point method despite dependent constraints. Math. Oper. Res. 25 (2000), 179–194 | DOI | MR | Zbl
[17] Robinson S. M.: Generalized equations and their solutions. Part II: Applications to nonlinear programming. Math. Programming Stud. 19 (1982), 200–221 | DOI | MR | Zbl
[18] Wright S. J.: Superlinear convergence of a stabilized SQP method to a degenerate solution. Comput. Optim. Appl. 11 (1998), 253–275 | DOI | MR | Zbl
[19] Wright S. J.: On the convergence of the Newton/log-barrier method. Math. Programming 90A (2001), 71–100 | DOI | MR | Zbl
[20] Wright S. J.: Effects of finite-precision arithmetic on interior-point methods for nonlinear programming. SIAM J. Optim. 12 (2001), 36–78 | DOI | MR | Zbl
[21] Wright S. J., Orban D.: Properties of the Log-barrier Function on Degenerate Nonlinear Programs. Preprint ANL/MCS-P772-0799, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne 1999, revised May 2001 | MR