Keywords: linear complementarity problem; standard embedding; Jongen– Jonker–Twilt regularity; Mangasarian–Fromovitz constraint qualification; pathfollowing methods
@article{KYB_2004_40_5_a2,
author = {Allonso, Sira Allende and Guddat, J\"urgen and Nowack, Dieter},
title = {A modified standard embedding for linear complementarity problems},
journal = {Kybernetika},
pages = {551--570},
year = {2004},
volume = {40},
number = {5},
mrnumber = {2120996},
zbl = {1249.90273},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a2/}
}
Allonso, Sira Allende; Guddat, Jürgen; Nowack, Dieter. A modified standard embedding for linear complementarity problems. Kybernetika, Tome 40 (2004) no. 5, pp. 551-570. http://geodesic.mathdoc.fr/item/KYB_2004_40_5_a2/
[1] Allonso S. Allende, Guddat, J., Nowack D.: A modified penalty embedding for linear complementarity problems. Investigación Oper. 23 (2002), 1, 37–54 | MR
[2] Allgower E., Georg K.: Numerical Continuation Methods. An Introduction. Springer–Verlag, Berlin 1990 | MR | Zbl
[3] Bank B., Guddat J., Klatte D., Kummer, B., Tammer K.: Non-Linear Parametric Optimization. Akademie–Verlag Berlin, 1982 | Zbl
[4] Billups S. C.: A Homotopy-based algorithm for mixed complementarity problems. SIAM J. Optim. 12 (2002), 583–605 | DOI | MR | Zbl
[5] Billups S. C., Watson L. T.: A probability – one homotopie algorithm for nonsmooth equations and mixed complementarity problems. SIAM J. Optim. 12 (2002), 606–626 | DOI | MR
[7] Chen, Ch., Mangasarian O. L.: Smoothing methods for convex inequalities and linear complementarity problems. Math. Programming 71 (1995), 51–69 | DOI | MR | Zbl
[8] Pang R. W. Cottle J.-S., Stone R. E.: The Linear Complementarity Problem. Academic Press, Boston, MA, 1992 | MR
[9] Facchinei F., Pang J.-P.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. I and Vol. II. Springer Series in Operations Research, 2003 | MR | Zbl
[10] Ferris M. C., Munson, T., Ralph D.: A homotopy method for mixed complementarity problems based on the PATH–solver. In: Numerical Analysis 1999 (D. F. Griffiths and G. A. Watson, eds.), Research Notes in Mathematics, Chapman and Hall, London 2000, pp. 143–167 | MR
[11] Ferris M. C., Pang J.-S.: Engeneering and economic application of complementarity problems. SIAM Rev. 39 (1997), 669–713 | DOI | MR
[12] Fischer A.: A Newton–type method for positive–semidefinite linear complementarity problems. J. Optim. Theory Appl. 86 (1995), 3, 585–608 | DOI | MR | Zbl
[13] Fischer A., Kanzow, CH.: On finite termination of an iterative method for linear complementarity problems. Math. Programming 74 (1996), xxx–xxx | DOI | MR | Zbl
[14] Gfrerer H., Guddat J., Wacker,, Hj., Zulehner W.: Pathfollowing methods for Kuhn–Tucker curves by an active index set strategy. In: Systems and optimization (A. Bagchi and T. Th. Jongen, eds.), (Lecture Notes in Control and Information Sciences 66), Springer–Verlag Berlin, Heidelberg – New York 1985, pp. 111–131 | MR
[15] Gollmer R., Kausmann U., Nowack D., Wendler, K., Estrada J. Bacallao: Computerprogramm PAFO. Humboldt-Universität Berlin, Institut für Mathematik xxxx
[16] Gomez W., Guddat J., Jongen H. Th., Rückmann J.-J., Solano C.: Curvas criticas y saltos en optimizacion nolineal. Electronic Publication: The Electronic Library of Mathematics, http://www.emis.de/monographs/curvas/index.html
[17] Guddat J., Guerra, F., Jongen H. Th.: Parametric Optimization: Singularities, Pathfollowing and Jumps. BG Teubner, Stuttgart and John Wiley, Chichester 1990 | MR | Zbl
[18] Jongen H. Th., Jonker, P., Twilt F.: Critical Sets in Parametric Optimization. Math. Programming 34 (1986), 333–353 | DOI | MR | Zbl
[19] Jongen H. Th., Jonker, P., Twilt F.: Nonlinear Optimization in Finite Dimension: Morse Theory, Chebysher Approximation, Transversality, Flows, Parametric Aspects. Kluwer, 2000 | MR
[20] Kanzow, Ch.: Some boninterior continuation methods for linear complementarity problems. SIAM J. Appl. Anal. 17 (1996), 851–868 | DOI | MR
[21] Kojima M., Megiddo N., Noma, T., Yoshishe A.: A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems. Springer, Berlin 1991
[22] Nožička F.: Über eine Klasse von linearen einparametrischen Optimierungsproblemen. Math. Operationsforschung Statist. 3, (1972), 159–194 | DOI | MR | Zbl
[23] Nožička F., Guddat J., Hollatz, H., Bank B.: Theorie der linearen parametrischen Optimierung. Akademic–Verlag, Berlin 1974 | Zbl
[24] Reinholdt W. C.: Numerical Analysis of Parametric Nonlinear Equations. John Wiley, New York 1986
[25] Rückmann J.-J., Tammer K.: On linear-quadratic perturbations in one-parametric non-linear optimization. Systems Sci. 18 (1992), 1, 37–48 | MR
[26] Schmid R.: Eine modifizierte Standardeinbettung zur Behandlung von Gleichungs- und Ungleichungsrestriktionen. Diplomarbeit, Humboldt-Universitiät zu Berlin, 2000
[27] Sellami H., Robinson S. M.: Implementation of a continuation method for normal maps. Math. Programming 76 (1976), 563–578 | DOI | MR
[28] Stoer J., Wechs H.: Infeasible-interior-point paths for sufficient linear complementarity problems and their analyticity. Math. Programming 83 (1998), 407–423 | DOI | MR | Zbl
[29] Stoer J., Wechs, M., Mizuni S.: High order infeasible-interior-point-method for sufficient linear complementarity problems. Math. Oper. Res. 23 (1998), 832–862 | DOI | MR
[30] (ed.), Hj. Wacker: Continuation Methods. Academic Press, New York 1978 | MR | Zbl
[31] Watson T.: Solving the nonlinear complementarity problem by a homotopy method. SIAM J. Control Appl. 17 (1979), 36–46 | DOI | MR | Zbl
[32] Xu S., Burke J. V.: A polynomial time interior-point path-following algorithm for LCP based on Chen–Harker–Kanzow smoothing techniques. Math. Programming 86 (1999) | MR | Zbl