Keywords: control chart; frame of span $k$; average run length; probability distribution; compact metric space
@article{KYB_2004_40_4_a7,
author = {Sk\v{r}iv\'anek, Jaroslav},
title = {The optimal control chart procedure},
journal = {Kybernetika},
pages = {501--510},
year = {2004},
volume = {40},
number = {4},
mrnumber = {2102368},
zbl = {1249.93178},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a7/}
}
Skřivánek, Jaroslav. The optimal control chart procedure. Kybernetika, Tome 40 (2004) no. 4, pp. 501-510. http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a7/
[1] Atienza O. O., Ang B. W., Tang L. C.: Statistical process control and forecasting. Internat. J. Quality Science 1 (1997), 37–51 | DOI
[2] Engelking R.: General Topology. PWN, Warszawa 1977 | MR | Zbl
[3] Feigenbaum A. V.: Total Quality Control. McGraw–Hill, New York 1991
[4] Gitlow H., Gitlow S., Oppenheim, A., Oppenheim R.: Tools and Methods for the Improvement of Quality. Irwin, Boston 1989 | Zbl
[5] James P. T. J.: Total Quality Management: An Introductory Text. Prentice Hall, London 1996
[6] Arquardt D. W.: Twin metric control - CUSUM simplified in a Shewhart framework. Internat. J. Quality & Reliability Management 3 1997), 220–233 | DOI
[7] Ncube M. M.: Cumulative score quality control procedures for process variability. Internat. J. Quality & Reliability Management 5 (1994), 38–45 | DOI
[8] Quesenberry C. P.: SPC Methods for Quality Improvement. Wiley, New York 1997
[9] Roberts S. W.: A comparison of some control chart procedures. Technometrics 1 (1966), 239–250 | MR
[10] Srivastava M. S., Wu Y.: Economical quality control procedures based on symmetric random walk model. Statistica Sinica 6 (1996), 389–402 | MR | Zbl
[11] Taguchi G.: Quality engineering in Japan. Commentaries in Statistics, Series A 14 (1985), 2785–2801 | DOI