Keywords: Pocklington integral equation; numerical solutions; Haar wavelets
@article{KYB_2004_40_4_a6,
author = {Shamsi, M. and Razzaghi, M. and Nazarzadeh, J. and Shafiee, M.},
title = {Haar wavelets method for solving {Pocklington's} integral equation},
journal = {Kybernetika},
pages = {491--500},
year = {2004},
volume = {40},
number = {4},
mrnumber = {2102367},
zbl = {1249.65289},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a6/}
}
TY - JOUR AU - Shamsi, M. AU - Razzaghi, M. AU - Nazarzadeh, J. AU - Shafiee, M. TI - Haar wavelets method for solving Pocklington's integral equation JO - Kybernetika PY - 2004 SP - 491 EP - 500 VL - 40 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a6/ LA - en ID - KYB_2004_40_4_a6 ER -
Shamsi, M.; Razzaghi, M.; Nazarzadeh, J.; Shafiee, M. Haar wavelets method for solving Pocklington's integral equation. Kybernetika, Tome 40 (2004) no. 4, pp. 491-500. http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a6/
[1] Beylkin G., Coifman, R., Rokhlin V.: Fast wavelet transforms and numerical algorithms, I. Commun. Pure Appl. Math. 44 (1991), 141–183 | DOI | MR | Zbl
[2] Dahmen W. S. Proessdorf , Schneider R.: Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast algorithms. Adv. in Comput. Math. 1 (1993), 259–335 | DOI | MR
[3] Daubechies I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36 (1990), 961–1005 | DOI | MR | Zbl
[4] Daubechies I.: Ten Lectures on Wavelets. SIAM, 1992 | MR | Zbl
[5] Davies P. J., Duncan D. B., Funkenz S. A.: Accurate and efficient algorithms for frequency domain scattering from a thin wire. J. Comput. Phys. 168 (2001), 1, 155-183 | DOI | MR
[6] Goswami J. C., Chan A. K., Chui C. K.: On solving first-kind integral equations using wavelets on a bounded interval. IEEE Trans. Antennas and Propagation 43 (1995), 6, 614–622 | DOI | MR | Zbl
[7] Herve A.: Multi-resolution analysis of multiplicity $d$. Application to dyadic interpolation. Comput. Harmonic Anal. 1 (1994), 299–315 | DOI | MR | Zbl
[8] Pocklington H. C.: Electrical oscillation in wires. Proc. Cambridge Phil. Soc. 9 (1897), 324–332
[9] Richmond J. H.: Digital computer solutions of the rigorous equations for scatter problems. Proc. IEEE 53 (1965), 796–804
[10] Werner D. H., Werner P. L., Breakall J. K.: Some computational aspects of Pocklington’s integral equation for thin wires. IEEE Trans. Antennas and Propagation 42 (1994), 4, 561–563 | DOI