Anti-periodic solutions to a parabolic hemivariational inequality
Kybernetika, Tome 40 (2004) no. 4, pp. 477-489 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we deal with the anti-periodic boundary value problems with nonlinearity of the form $b(u)$, where $b\in L^{\infty }_{{\rm loc}}({R}).$ Extending $b$ to be multivalued we obtain the existence of solutions to hemivariational inequality and variational-hemivariational inequality.
In this paper we deal with the anti-periodic boundary value problems with nonlinearity of the form $b(u)$, where $b\in L^{\infty }_{{\rm loc}}({R}).$ Extending $b$ to be multivalued we obtain the existence of solutions to hemivariational inequality and variational-hemivariational inequality.
Classification : 34G25, 35B10, 35K50, 35K55, 35K85, 35K86, 47J20, 49J40
Keywords: hemivariational inequality; variational-hemivariational inequality; anti-periodic boundary value problems
@article{KYB_2004_40_4_a5,
     author = {Park, Jong Yeoul and Kim, Hyun Min and Park, Sun Hye},
     title = {Anti-periodic solutions to a parabolic hemivariational inequality},
     journal = {Kybernetika},
     pages = {477--489},
     year = {2004},
     volume = {40},
     number = {4},
     mrnumber = {2102366},
     zbl = {1249.35190},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a5/}
}
TY  - JOUR
AU  - Park, Jong Yeoul
AU  - Kim, Hyun Min
AU  - Park, Sun Hye
TI  - Anti-periodic solutions to a parabolic hemivariational inequality
JO  - Kybernetika
PY  - 2004
SP  - 477
EP  - 489
VL  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a5/
LA  - en
ID  - KYB_2004_40_4_a5
ER  - 
%0 Journal Article
%A Park, Jong Yeoul
%A Kim, Hyun Min
%A Park, Sun Hye
%T Anti-periodic solutions to a parabolic hemivariational inequality
%J Kybernetika
%D 2004
%P 477-489
%V 40
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a5/
%G en
%F KYB_2004_40_4_a5
Park, Jong Yeoul; Kim, Hyun Min; Park, Sun Hye. Anti-periodic solutions to a parabolic hemivariational inequality. Kybernetika, Tome 40 (2004) no. 4, pp. 477-489. http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a5/

[1] Aizicovici S., Mckibben M., Reich S.: Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities. Nonlinear Anal. 43 (2001), 233–251 | DOI | MR | Zbl

[2] Aizicovici S., Pavel N. H.: Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space. J. Funct. Anal. 99 (1991), 387–408 | DOI | MR | Zbl

[3] Aizicovici S., Reich S.: Anti-periodic solutions to a class of non-monotone evolution equations. Discrete Contin. Dynam. Systems. 5 (1999), 35–42 | MR | Zbl

[4] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spacess. Noordhoff, Leyden 1976 | MR

[5] Miettinen M.: A parabolic hemivariational inequality. Nonlinear Anal. 26 (1996), 725–734 | DOI | MR | Zbl

[6] Miettinen M., Panagiotopoulos P. D.: On parabolic hemivariational inequalities and applications. Nonlinear Anal. 35 (1999), 885–915 | MR | Zbl

[7] Nakao M.: Existence of an anti-periodic solution for the quasilinear wave equation with viscosity. J. Math. Anal. Appl. 204 (1996), 754–764 | DOI | MR | Zbl

[8] Nakao M., Okochi H.: Anti-periodic solutions for $u_{tt}-(\sigma (u_x))_x-u_{xxt}=f(x,t)$. J. Math. Anal. Appl. 197 (1996), 796–809 | MR

[9] Okochi H.: On the existence of periodic solutions to nonlinear abstract parabolic equations. J. Math. Soc. Japan 40 (1988), 541–553 | DOI | MR | Zbl

[10] Panatiotopoulos P. D.: Nonconvex superpotentials in the sense of F. H. Clarke and applications. Mech. Res. Comm. 8 (1981), 335–340 | MR

[11] Rauch J.: Discontinuous semilinear differential equations and multiple valued maps. Proc. Amer. Math. Soc. 64 (1977), 277–282 | DOI | MR | Zbl

[12] Showalter R. E.: Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys Monographs 49 (1996) | MR