Keywords: hemivariational inequality; variational-hemivariational inequality; anti-periodic boundary value problems
@article{KYB_2004_40_4_a5,
author = {Park, Jong Yeoul and Kim, Hyun Min and Park, Sun Hye},
title = {Anti-periodic solutions to a parabolic hemivariational inequality},
journal = {Kybernetika},
pages = {477--489},
year = {2004},
volume = {40},
number = {4},
mrnumber = {2102366},
zbl = {1249.35190},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a5/}
}
Park, Jong Yeoul; Kim, Hyun Min; Park, Sun Hye. Anti-periodic solutions to a parabolic hemivariational inequality. Kybernetika, Tome 40 (2004) no. 4, pp. 477-489. http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a5/
[1] Aizicovici S., Mckibben M., Reich S.: Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities. Nonlinear Anal. 43 (2001), 233–251 | DOI | MR | Zbl
[2] Aizicovici S., Pavel N. H.: Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space. J. Funct. Anal. 99 (1991), 387–408 | DOI | MR | Zbl
[3] Aizicovici S., Reich S.: Anti-periodic solutions to a class of non-monotone evolution equations. Discrete Contin. Dynam. Systems. 5 (1999), 35–42 | MR | Zbl
[4] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spacess. Noordhoff, Leyden 1976 | MR
[5] Miettinen M.: A parabolic hemivariational inequality. Nonlinear Anal. 26 (1996), 725–734 | DOI | MR | Zbl
[6] Miettinen M., Panagiotopoulos P. D.: On parabolic hemivariational inequalities and applications. Nonlinear Anal. 35 (1999), 885–915 | MR | Zbl
[7] Nakao M.: Existence of an anti-periodic solution for the quasilinear wave equation with viscosity. J. Math. Anal. Appl. 204 (1996), 754–764 | DOI | MR | Zbl
[8] Nakao M., Okochi H.: Anti-periodic solutions for $u_{tt}-(\sigma (u_x))_x-u_{xxt}=f(x,t)$. J. Math. Anal. Appl. 197 (1996), 796–809 | MR
[9] Okochi H.: On the existence of periodic solutions to nonlinear abstract parabolic equations. J. Math. Soc. Japan 40 (1988), 541–553 | DOI | MR | Zbl
[10] Panatiotopoulos P. D.: Nonconvex superpotentials in the sense of F. H. Clarke and applications. Mech. Res. Comm. 8 (1981), 335–340 | MR
[11] Rauch J.: Discontinuous semilinear differential equations and multiple valued maps. Proc. Amer. Math. Soc. 64 (1977), 277–282 | DOI | MR | Zbl
[12] Showalter R. E.: Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys Monographs 49 (1996) | MR