On types of fuzzy numbers under addition
Kybernetika, Tome 40 (2004) no. 4, pp. 469-476 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the question whether, for given fuzzy numbers, there are different pairs of $t$-norm such that the resulting membership function within the extension principle under addition are identical. Some examples are given.
We consider the question whether, for given fuzzy numbers, there are different pairs of $t$-norm such that the resulting membership function within the extension principle under addition are identical. Some examples are given.
Classification : 03E20, 03E72
Keywords: fuzzy number; extension principles; $t$-norms
@article{KYB_2004_40_4_a4,
     author = {Hong, Dug Hun},
     title = {On types of fuzzy numbers under addition},
     journal = {Kybernetika},
     pages = {469--476},
     year = {2004},
     volume = {40},
     number = {4},
     mrnumber = {2102365},
     zbl = {1249.03095},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a4/}
}
TY  - JOUR
AU  - Hong, Dug Hun
TI  - On types of fuzzy numbers under addition
JO  - Kybernetika
PY  - 2004
SP  - 469
EP  - 476
VL  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a4/
LA  - en
ID  - KYB_2004_40_4_a4
ER  - 
%0 Journal Article
%A Hong, Dug Hun
%T On types of fuzzy numbers under addition
%J Kybernetika
%D 2004
%P 469-476
%V 40
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a4/
%G en
%F KYB_2004_40_4_a4
Hong, Dug Hun. On types of fuzzy numbers under addition. Kybernetika, Tome 40 (2004) no. 4, pp. 469-476. http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a4/

[1] Baets B. D., Marková–Stupňanová A.: Analytical expressions for the addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 203–213 | DOI | MR | Zbl

[2] Dubois D., Prade H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York 1980 | MR | Zbl

[3] Dubois D., Prade H.: Additions of interactive fuzzy numbers. IEEE Trans. Automat. Control 26 (1981), 926–936 | DOI | MR

[4] Fullér R.: On product sum of triangular fuzzy numbers. Fuzzy Sets and Systems 41 (1991), 83–87 | DOI | MR | Zbl

[5] Fullér R., Keresztfalvi T.: t-norm-based addition of fuzzy intervals. Fuzzy Sets and Systems 51 (1992), 155–159 | DOI | MR

[6] Fullér R., Zimmermann H. J.: On computation of the compositional rule of inference under triangular norms. Fuzzy Sets and Systems 51 (1992), 267–275 | DOI | MR | Zbl

[7] Gebhardt A.: On types of fuzzy numbers and extension principles. Fuzzy Sets and Systems 75 (1995), 311–318 | DOI | MR | Zbl

[8] Hong D. H.: A note on product-sum of $L$-$R$ fuzzy numbers. Fuzzy Sets and Systems 66 (1994), 381–382 | DOI | MR | Zbl

[9] Hong D. H., Hwang S. Y.: On the compositional rule of inference under triangular norms. Fuzzy Sets and Systems 66 (1994), 24–38 | MR | Zbl

[10] Hong D. H., Hwang S. Y.: On the convergence of $T$-sum of $L$-$R$ fuzzy numbers. Fuzzy Sets and Systems 63 (1994), 175–180 | DOI | MR | Zbl

[11] Hong D. H., Hwang C.: A $T$-sum bound of $LR$-fuzzy numbers. Fuzzy Sets and Systems 91 (1997), 239–252 | DOI | MR | Zbl

[12] Hong D. H.: Some results on the addition of fuzzy intervals. Fuzzy Sets and Systems 122 (2001), 349–352 | DOI | MR | Zbl

[13] Hong D. H.: On shape-preserving additions of fuzzy intervals. J. Math. Anal. Appl. 267 (2002), 369–376 | DOI | MR | Zbl

[14] Kolesárová A.: Triangular norm-based addition of linear fuzzy numbers. Tatra Mountains Math. Publ. 6 (1995), 75–81 | MR | Zbl

[15] Kolesárová K.: Triangular norm-based addition preserving linearity of T-sums of linear fuzzy intervals. Mathware and Soft Computing 5 (1998), 91–98 | MR | Zbl

[16] Mareš M., Mesiar R.: Composition of shape generators. Acta Math. Inform. Univ. Ostraviensis 4 (1996), 37–46 | MR | Zbl

[17] Marková–Stupňanová A.: A note to the addition of fuzzy numbers based on a continuous Archimedean $t$-norm. Fuzzy Sets and Systems 91 (1997), 253–258 | Zbl

[18] Marková A.: $T$-sum of $L$-$R$ fuzzy numbers. Fuzzy Sets and Systems 85 (1997), 379–384 | DOI | MR

[19] Mesiar R.: Triangular norm-based addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 231–237 | DOI | MR | Zbl

[20] Mesiar R.: A note to the $T$-sum of $L$-$R$ fuzzy numbers. Fuzzy Sets and Systems 87 (1996), 259–261 | DOI | MR | Zbl

[21] Mesiar R.: Shape preserving additions of fuzzy intervals. Fuzzy Sets and Systems 86 (1997), 73–78 | DOI | MR | Zbl