Nearness relations in linear spaces
Kybernetika, Tome 40 (2004) no. 4, pp. 441-458 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we consider nearness-based convergence in a linear space, where the coordinatewise given nearness relations are aggregated using weighted pseudo-arithmetic and geometric means and using continuous t-norms.
In this paper, we consider nearness-based convergence in a linear space, where the coordinatewise given nearness relations are aggregated using weighted pseudo-arithmetic and geometric means and using continuous t-norms.
Classification : 03E72, 40A05, 40H05, 46A45
Keywords: nearness relation; pseudo-arithmetic mean; geometric mean; nearness-convergence; continuous t-norm
@article{KYB_2004_40_4_a2,
     author = {Kalina, Martin},
     title = {Nearness relations in linear spaces},
     journal = {Kybernetika},
     pages = {441--458},
     year = {2004},
     volume = {40},
     number = {4},
     mrnumber = {2102363},
     zbl = {1249.40001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a2/}
}
TY  - JOUR
AU  - Kalina, Martin
TI  - Nearness relations in linear spaces
JO  - Kybernetika
PY  - 2004
SP  - 441
EP  - 458
VL  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a2/
LA  - en
ID  - KYB_2004_40_4_a2
ER  - 
%0 Journal Article
%A Kalina, Martin
%T Nearness relations in linear spaces
%J Kybernetika
%D 2004
%P 441-458
%V 40
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a2/
%G en
%F KYB_2004_40_4_a2
Kalina, Martin. Nearness relations in linear spaces. Kybernetika, Tome 40 (2004) no. 4, pp. 441-458. http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a2/

[1] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators, New Trends and Applications, Springer-Verlag, Heidelberg – New York 2002, pp. 3–104 | MR | Zbl

[2] Dobrakovová J.: Nearness, convergence and topology. Busefal 80 (1999), 17–23

[3] Dobrakovová J.: Nearness based topology. Tatra Mount. Math. Publ. 21 (2001), 163–170 | MR | Zbl

[4] Janiš V.: Fixed points of fuzzy functions. Tatra Mount. Math. Publ. 12 (1997), 13–19 | MR | Zbl

[5] Janiš V.: Nearness derivatives and fuzzy differentiability. Fuzzy Sets and Systems 108 (1999), 99–102 | MR | Zbl

[6] Kalina M.: Derivatives of fuzzy functions and fuzzy derivatives. Tatra Mount. Math. Publ. 12 (1997), 27–34 | MR | Zbl

[7] Kalina M.: Fuzzy smoothness and sequences of fuzzy smooth functions. Fuzzy Sets and Systems 105 (1999), 233–239 | MR | Zbl

[8] Kalina M., Dobrakovová J.: Relation of fuzzy nearness in Banach space. In: Proc. East-West Fuzzy Colloquium, Zittau 2002, pp. 26–32

[9] Klement E. P., Mesiar, R., Pap E.: Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems 104 (1999), 3–13 | MR | Zbl

[10] Klement E. P., Mesiar, R., Pap E.: Triangular norms. Trends in Logic, Studia Logica Library 8, Kluwer 2000 | MR | Zbl

[11] Kolesárová A.: On the comparision of quasi-arithmetic means. Busefal 80 (1999), 30–34

[12] Mesiar R., Komorníková M.: Aggregation operators. In: Proc. PRIM’96, XI Conference on Applied Mathematics 1996, pp. 193-211

[13] Micháliková–Rückschlossová T.: Some constructions of aggregation operators. J. Electrical Engrg. 12 (2000), 29–32 | Zbl

[14] Viceník P.: Noncontinuous Additive Generators of Triangular Norms (in Slovak). Ph. D. Thesis. STU Bratislava 2002