Keywords: nearness relation; pseudo-arithmetic mean; geometric mean; nearness-convergence; continuous t-norm
@article{KYB_2004_40_4_a2,
author = {Kalina, Martin},
title = {Nearness relations in linear spaces},
journal = {Kybernetika},
pages = {441--458},
year = {2004},
volume = {40},
number = {4},
mrnumber = {2102363},
zbl = {1249.40001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a2/}
}
Kalina, Martin. Nearness relations in linear spaces. Kybernetika, Tome 40 (2004) no. 4, pp. 441-458. http://geodesic.mathdoc.fr/item/KYB_2004_40_4_a2/
[1] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators, New Trends and Applications, Springer-Verlag, Heidelberg – New York 2002, pp. 3–104 | MR | Zbl
[2] Dobrakovová J.: Nearness, convergence and topology. Busefal 80 (1999), 17–23
[3] Dobrakovová J.: Nearness based topology. Tatra Mount. Math. Publ. 21 (2001), 163–170 | MR | Zbl
[4] Janiš V.: Fixed points of fuzzy functions. Tatra Mount. Math. Publ. 12 (1997), 13–19 | MR | Zbl
[5] Janiš V.: Nearness derivatives and fuzzy differentiability. Fuzzy Sets and Systems 108 (1999), 99–102 | MR | Zbl
[6] Kalina M.: Derivatives of fuzzy functions and fuzzy derivatives. Tatra Mount. Math. Publ. 12 (1997), 27–34 | MR | Zbl
[7] Kalina M.: Fuzzy smoothness and sequences of fuzzy smooth functions. Fuzzy Sets and Systems 105 (1999), 233–239 | MR | Zbl
[8] Kalina M., Dobrakovová J.: Relation of fuzzy nearness in Banach space. In: Proc. East-West Fuzzy Colloquium, Zittau 2002, pp. 26–32
[9] Klement E. P., Mesiar, R., Pap E.: Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems 104 (1999), 3–13 | MR | Zbl
[10] Klement E. P., Mesiar, R., Pap E.: Triangular norms. Trends in Logic, Studia Logica Library 8, Kluwer 2000 | MR | Zbl
[11] Kolesárová A.: On the comparision of quasi-arithmetic means. Busefal 80 (1999), 30–34
[12] Mesiar R., Komorníková M.: Aggregation operators. In: Proc. PRIM’96, XI Conference on Applied Mathematics 1996, pp. 193-211
[13] Micháliková–Rückschlossová T.: Some constructions of aggregation operators. J. Electrical Engrg. 12 (2000), 29–32 | Zbl
[14] Viceník P.: Noncontinuous Additive Generators of Triangular Norms (in Slovak). Ph. D. Thesis. STU Bratislava 2002